Skip to content

xuhaike/SparseCL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SparseCL

Sentence Embedding This repository contains the official implementation and data for "SparseCL: Sparse Contrastive Learning for Contradiction Retrieval".

[Webpage] [Paper] [Huggingface Dataset] [Twitter] [Model Checkpoints]

Setup Environment

Before running the experiments, ensure that you have the correct environment set up by referring to the requirements.txt file. This file contains all the necessary packages.

Download Training and Test Data

Please download our training and test data from Huggingface Dataset and put them in a new folder "./data"

Running the Experiments

To conduct the experiments, use the following scripts provided in our repository:

Standard Contrastive Learning

To perform standard contrastive learning on Arguana/HotpotQA/MSMARCO datasets, run:

# train on arguana
./run_train_cl_arguana.sh

# train on hotpotqa
./run_train_cl_hotpotqa.sh

# train on msmarco
./run_train_cl_msmarco.sh

If you want to use different models, please change the args: 'model_name_or_path' and 'model_name', e.g., if you want to use UAE as the backbone model, you can replace 'BAAI/bge-base-en-v1.5' with 'WhereIsAI/UAE-Large-V1' and 'our_bge' with 'our_uae'. Remember to adjust the hyperparameters accordingly if you change to different models. Please refer to Table 7 in our paper for our hyperparameter choices.

python train.py \
    --model_name our_bge \
    --model_name_or_path BAAI/bge-base-en-v1.5 \
    --train_file data/arguana_training_final.csv \
    --eval_file data/arguana_validation_final.csv \
    --output_dir results/our-bge-arguana-finetune \
    --num_train_epochs 1 \
    --gradient_checkpointing True \
    --per_device_train_batch_size 64 \
    --per_device_eval_batch_size 64 \
    --gradient_accumulation_steps 1 \
    --learning_rate 2e-5 \
    --max_seq_length 512 \
    --pad_to_max_length True \
    --pooler_type avg \
    --overwrite_output_dir \
    --temp 0.02 \
    --loss_type cos \
    --dataloader_drop_last True \
    --do_train \
    --do_eval \
    --fp16 \
    "$@"

Currently, we support: 'BAAI/bge-base-en-v1.5', 'WhereIsAI/UAE-Large-V1', 'Alibaba-NLP/gte-large-en-v1.5'.

Sparse Contrastive Learning

Run the following scripts to perform SparseCL on Arguana/HotpotQA/MSMARCO datasets:

# train on arguana
./run_train_sparsecl_arguana.sh

# train on hotpotqa
./run_train_sparsecl_hotpotqa.sh

# train on msmarco
./run_train_sparsecl_msmarco.sh

If you want to use different models, please change the args: 'model_name_or_path' and 'model_name', e.g., if you want to use UAE as the backbone model, you can replace 'BAAI/bge-base-en-v1.5' with 'WhereIsAI/UAE-Large-V1' and 'our_bge' with 'our_uae'. Remember to adjust the hyperparameters accordingly if you change to different models. Please refer to Table 7 in our paper for our hyperparameter choices.

python train.py \
    --model_name our_bge \
    --model_name_or_path BAAI/bge-base-en-v1.5 \
    --train_file data/arguana_training_final.csv \
    --eval_file data/arguana_validation_final.csv \
    --output_dir results/our-bge-arguana-sparsity \
    --gradient_checkpointing True \
    --num_train_epochs 3 \
    --per_device_train_batch_size 64 \
    --per_device_eval_batch_size 64 \
    --gradient_accumulation_steps 1 \
    --learning_rate 2e-5 \
    --max_seq_length 512 \
    --pad_to_max_length True \
    --pooler_type avg \
    --overwrite_output_dir \
    --temp 0.02 \
    --loss_type sparsity \
    --dataloader_drop_last True \
    --do_train \
    --do_eval \
    --fp16 \
    "$@"

Currently, we support: 'BAAI/bge-base-en-v1.5', 'WhereIsAI/UAE-Large-V1', 'Alibaba-NLP/gte-large-en-v1.5'.

Testing the Model

Finally, test contradiction retrieval on different datasets by running the following scripts:

# test on arguana
./run_test_arguana.sh

# test on hotpotqa
./run_test_hotpotqa.sh

# test on msmarco
./run_test_msmarco.sh

Data Cleaning

If you want to run data cleaning experiments in our paper please use the following scripts:

# test on hotpotqa
./run_test_data_cleaning_hotpotqa.sh

# test on msmarco
./run_test_data_cleaning_msmarco.sh

You can use our released Model Checkpoints or your own models.

Source Code Acknowledgement

Part of our code is adapted from SimCSE at Princeton NLP.

Contact

If you have any questions about the implementation, please contact linzongy21@cs.ucla.edu or haikexu@mit.edu

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published