This repository provides the code for An empirical study on evaluation metrics of generative adversarial networks.
- Python 3.6.4
- torch 0.4.0
- torchvision 0.2.1
- pot 0.4.0
- tqdm 4.19.6
- numpy, scipy, math
- We create a demo for DCGAN training as well as computing all the metrics after each epoch.
In the demo, final metrics scores of all epoches will be scored in<outf>/score_tr_ep.npy
- If you want to compute metrics of your own images, you have to modify the codes of function
compute_score_raw()
inmetric.py
by yourself :)
python3 demo_dcgan.py \
--dataset cifar10 \
--cuda \
--dataroot <data_folder> \
--outf <output_folder> \
--sampleSize 2000