Skip to content
/ QVI Public

Implementation of "Quadratic video interpolation", NeurIPS 2019.

Notifications You must be signed in to change notification settings

xuxy09/QVI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quadratic video interpolation

Implementation of "Quadratic video interpolation", NeurIPS 2019.

Paper, Project

Packages

The following pakages are required to run the code:

  • python==3.8
  • pytorch==1.5.1
  • cudatoolkit==10.1
  • torchvision==0.6.1
  • cupy==8.6.0
  • tensorboardX
  • opencv-python
  • easydict

Video

IMAGE ALT TEXT HERE

Demo

seq1
--00000.png 
--00001.png
--... 
seq2
--00000.png 
--00001.png
--... 
  • Then run the demo:
python demo.py configs/test_config.py

The output will be in "outputs/example". Note that all settings are in config files under the folder "./configs".

Train

  • Download the QVI-960 dataset for training and put it in the folder "datasets"
  • Download the validation data which is a subset of the Adobe-240 dataset, and put it in the folder "datasets"
  • Then run the training code:
python train.py configs/train_config.py

Test

More datasets for evaluation:

You can use "datas/Sequence.py" to conveniently load the test datasets.

   

Please consider citing this paper if you find the code and data useful in your research:

@inproceedings{qvi_nips19,
	title={Quadratic video interpolation},
	author={Xiangyu Xu and Li Siyao and Wenxiu Sun and Qian Yin and Ming-Hsuan Yang},
	booktitle = {NeurIPS},
	year={2019}
}

About

Implementation of "Quadratic video interpolation", NeurIPS 2019.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages