Provides an NVIDIA GPU-enabled container with a lightweight (Miniconda) Anaconda installation. Anaconda is an open data science platform based on Python 3. This container installs Anaconda into the /usr/local/anaconda
directory. The default user, anaconda
runs a Tini shell /usr/bin/tini
, and comes preloaded with the conda
command in the environment $PATH
. Additional versions with NVIDIA/CUDA support and Jupyter Notebooks tags are available.
This container enables the conda
command with a lightweight version of Anaconda (Miniconda) and the conda-forge
repository in the /usr/local/anaconda
directory. The default user, anaconda
runs a Tini shell /usr/bin/tini
, and comes preloaded with the conda
command in the environment $PATH
. Additional versions with NVIDIA/CUDA support and Jupyter Notebooks tags are available.
Two flavors provide an NVIDIA GPU-enabled container with Anaconda.
The base container, based on the ubuntu:latest
from Ubuntu running a Tini shell. For the container with a /usr/bin/tini
entry point, use:
docker pull xychelsea/anaconda3:latest
With Jupyter Notebooks server pre-installed, pull with:
docker pull xychelsea/anaconda3:latest-jupyter
Modified version of nvidia/cuda:latest
container, with support for NVIDIA/CUDA graphical processing units through the Tini shell. For the container with a /usr/bin/tini
entry point:
docker pull xychelsea/anaconda3:latest-gpu
With Jupyter Notebooks server pre-installed, pull with:
docker pull xychelsea/anaconda3:latest-gpu-jupyter
To run the containers with the generic Docker application or NVIDIA enabled Docker, use the docker run
command.
docker run --rm -it xychelsea/anaconda3:latest
With Jupyter Notebooks server pre-installed, run with:
docker run --rm -it -d -p 8888:8888 xychelsea/anaconda:latest-jupyter
docker run --gpus all --rm -it xychelsea/anaconda:latest-gpu /bin/bash
With Jupyter Notebooks server pre-installed, run with:
docker run --gpus all --rm -it -d -p 8888:8888 xychelsea/magenta:latest-gpu-jupyter
To build either a GPU-enabled container or without GPUs, use the xychelsea/anaconda3-docker GitHub repository.
git clone git://github.com/xychelsea/anaconda3-docker.git
The base container, based on the ubuntu:latest
from Ubuntu running Tini shell:
docker build -t anaconda3:latest -f Dockerfile .
With Jupyter Notebooks server pre-installed, build with:
docker build -t anaconda3:latest-jupyter -f Dockerfile.jupyter .
docker build -t anaconda3:latest-gpu -f Dockerfile.nvidia .
With Jupyter Notebooks server pre-installed, build with:
docker build -t anaconda3:latest-gpu-jupyter -f Dockerfile.nvidia-jupyter .
The default environment uses the following configurable options:
ANACONDA_DIST=Miniconda3
ANACONDA_PYTHON=py38
ANACONDA_CONDA=4.8.3
ANACONDA_OS=Linux
ANACONDA_ARCH=x86_64
ANACONDA_VERSION=$ANACONDA_DIST-$ANACONDA_PYTHON_$ANACONDA_CONDA-$ANACONDA_OS-$ANACONDA_ARCH
ANACONDA_GID=100
ANACONDA_PATH=/usr/local/anaconda3
ANACONDA_UID=1000
ANACONDA_USER=anaconda
ANACONDA_ENV=magenta
HOME=/home/$ANACONDA_USER
LANG=en_US.UTF-8
LANGUAGE=en_US.UTF-8
LC_ALL=en_US.UTF-8
SHELL=/bin/bash