Skip to content

xzwj/optimization_objective_of_lottery_ticket_hypothesis

Repository files navigation

Optimization Objective of Lottery Ticket Hypothesis

Code Layout

.
├── evaluate.py
├── experiments/
├── data/
│   ├── cifar-10-batches-py/
│   └── MNIST/
├── models/
│   ├── data_loaders.py
│   ├── nets.py
│   └── vgg.py
├── requirements.txt
├── train.py
└── utils.py
  • train.py: contains main training loop
  • utils.py: utility functions
  • evaluate.py: contains main evaluation loop
  • data/: store datasets
  • models/data_loaders.py: data loaders for each dataset
  • models/vgg.py: VGG11/13/16/19
  • models/nets.py: MLP, LeNet5, loss and evaluation metrics
  • experiments/: store hyperparameters, model weight parameters, checkpoint and training log of each experiments

Requirements

Create a conda environment and install requirements using pip:

>>> conda create -n lth python=3.7
>>> source activate lth
>>> pip install -r requirements.txt

How to Run

Train a model with the specified hyperparameters:

>>> python train.py --model {model name} --dataset {dataset name} --model_dir {hyperparameter directory}

For example, using LeNet5 and MNIST to train a model with the hyperparameters in experiments/mnist_lenet5/params.json:

>>> python train.py --model lenet5 --dataset mnist --model_dir experiments/mnist_lenet5

It will automatically download the dataset and puts it in “data” directory if the dataset is not downloaded. During the training loop, best model weight parameters, last model weight parameters, checkpoint, and training log will be saved in experiments/mnist_lenet5.

Evaluate a LeNet5 model with the checkpoint file “experiments/mnist_lenet5/best.pth.tar”:

>>> python evaluate.py --model lenet5 --dataset mnist --model_dir experiments/mnist_lenet5 --restore_file best

The evaluation results will be saved in experiments/mnist_lenet5.

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages