Skip to content
/ crn Public

code for "Composed Image Retrieval via Cross Relation Network with Hierarchical Aggregation Transformer"

Notifications You must be signed in to change notification settings

yan9qu/crn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Composed Image Retrieval via Cross Relation Network with Hierarchical Aggregation Transformer

PyTorch Paper

Updates

  • 😊 (12/08/2023) Code released!

Abstract

Composing Text and Image to Image Retrieval (CTI-IR) aims at finding the target image, which matches the query image visually along with the query text semantically. However, existing works ignore the fact that the reference text usually serves multiple functions, e.g., modification and auxiliary. To address this issue, we put forth a unified solution, namely Hierarchical Aggregation Transformer incorporated with Cross Relation Network (CRN). CRN unifies modification and relevance manner in a single framework. This configuration shows broader applicability, enabling us to model both modification and auxiliary text or their combination in triplet relationships simultaneously. Specifically, CRN includes: 1) Cross Relation Network comprehensively captures the relationships of various composed retrieval scenarios caused by two different query text types, allowing a unified retrieval model to designate adaptive combination strategies for flexible applicability; 2) Hierarchical Aggregation Transformer aggregates top-down features with Multi-layer Perceptron (MLP) to overcome the limitations of edge information loss in a window-based multi-stage Transformer. Extensive experiments demonstrate the superiority of the proposed CRN over all three fashion-domain datasets.

Maim requirements:

  1. Pytorch-gpu
  2. timm (You may need to modify the forword part of Swin_transformer to return all stage outputs.)

Training scripts used in main experiments

(1) FashionIQ: Creat files "dress","shirt", and "toptee" to save the outputs. dress: python train.py --dataset fashioniq --name dress --max_decay_epoch 20 --img_weight 1.0 --class_weight 1.0 --mul_kl_weight 1.0 --model_dir ./dress --num_epochs 50 shirt: python train.py --dataset fashioniq --name shirt --seed 599 --max_decay_epoch 20 --img_weight 1.0 --class_weight 1.0 --mul_kl_weight 1.0 --model_dir ./shirt --num_epochs 50 toptee: python train.py --dataset fashioniq --name toptee --seed 599 --max_decay_epoch 20 --img_weight 1.0 --class_weight 1.0 --mul_kl_weight 1.0 --model_dir ./toptee --num_epochs 50

(2) Shoes: Creat files "shoes" to save the outputs. python train.py --dataset shoes --seed 6195 --max_decay_epoch 30 --img_weight 1.0 --class_weight 1.0 --mul_kl_weight 1.0 --model_dir ./shoes --num_epochs 50

(3) Fashion200K: Creat files "Fashion200k" to save the outputs. python train.py --dataset fashion200k --seed 6195 --num 1 --img_weight 1.0 --class_weight 1.0 --mul_kl_weight 1.0 --model_dir ./fashion200k --num_epochs 40

Results

image

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@ARTICLE{10205526,
  author={Yang, Qu and Ye, Mang and Cai, Zhaohui and Su, Kehua and Du, Bo},
  journal={IEEE Transactions on Image Processing}, 
  title={Composed Image Retrieval via Cross Relation Network with Hierarchical Aggregation Transformer}, 
  year={2023},
  doi={10.1109/TIP.2023.3299791},
  ISSN={1941-0042}}

Acknowledgement

Most of the code modified from ClvcNet [1], thanks!

[1] Wen, Haokun, et al. "Comprehensive linguistic-visual composition network for image retrieval." Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021.

A detailed README will be updated later. Please stay tuned!

About

code for "Composed Image Retrieval via Cross Relation Network with Hierarchical Aggregation Transformer"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages