This repository contains the data and code for the baseline described in the following paper:
Entity Cloze By Date: What LMs Know About Unseen Entities
Yasumasa Onoe, Michael J.Q. Zhang, Shankar Padmanabhan, Greg Durrett, Eunsol Choi
ACL 2023
This codebase uses Python 3.7.9. Other versions may work as well.
Dependencies:
$ conda create -n ekp -y python=3.7.9
$ conda activate ekp
(ekp) $ pip install -r requirements.txt
- Entity Inferences:
data/entity_inferences
- ECBD:
data/ecbd
From the root dir, run an experiment python file.
Example:
(ekp) $ python experiments/gpt_ft.py
Experiment | Base Model | Editing Method | Data |
---|---|---|---|
gpt_ft_ecbd.py |
GPT2-XL or GPT-Neo 1.3B | Finetuning | ECBD |
gpt_ft_entity_inferences.py |
GPT2-XL or GPT-Neo 1.3B | Finetuning | Entity Inferences |
gpt_mend_ecbd.py |
GPT2-XL | MEND | ECBD |
gpt_mend_entity_inferences.py |
GPT2-XL | MEND | Entity Inferences |
t5_ft_ecbd.py |
T5-Large | Finetuning | ECBD |
t5_ft_entity_inferences.py |
T5-Large | Finetuning | Entity Inferences |
t5_mend_ecbd.py |
T5-Large | MEND | ECBD |
t5_mend_entity_inferences.py |
T5-Large | MEND | Entity Inferences |
NOTE: ROME with GPT2-XL will be added soon...
@inproceedings{onoe-etal-2023-lms,
title = {{Can LMs Learn New Entities from Descriptions? Challenges in Propagating Injected Knowledge}},
author = "Onoe, Yasumasa and
Zhang, Michael and
Padmanabhan, Shankar and
Durrett, Greg and
Choi, Eunsol",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.300",
pages = "5469--5485",
}
Please contact at yasumasa@utexas.edu
or yasumasaonoe@google.com
if you have any questions.