forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MetaSchedule][Testing] Add unittests for C1D search space (apache#12036
- Loading branch information
Showing
2 changed files
with
181 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Tests for MetaSchedule search space on CPU""" | ||
from tvm import meta_schedule as ms | ||
from tvm.meta_schedule.testing.space_generation import check_sketches, print_sketches | ||
from tvm.meta_schedule.testing.te_workload import create_te_workload | ||
from tvm.script import tir as T | ||
from tvm.target import Target | ||
|
||
|
||
def _target(): | ||
return Target("aws/cpu/c5.9xlarge") | ||
|
||
|
||
def test_cpu_c1d(): | ||
# fmt: off | ||
@T.prim_func | ||
def c1d_0(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
# body | ||
with T.block("root"): | ||
T.reads() | ||
T.writes() | ||
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) | ||
PadInput = T.alloc_buffer([1, 258, 64], dtype="float32") | ||
conv1d_nlc_global = T.alloc_buffer([1, 128, 128], dtype="float32") | ||
for i0, i1, i2 in T.grid(1, 258, 64): | ||
with T.block("PadInput"): | ||
i0_1, i1_1, i2_1 = T.axis.remap("SSS", [i0, i1, i2]) | ||
T.reads(inputs[i0_1, i1_1 - 1, i2_1]) | ||
T.writes(PadInput[i0_1, i1_1, i2_1]) | ||
PadInput[i0_1, i1_1, i2_1] = T.if_then_else(1 <= i1_1 and i1_1 < 257, inputs[i0_1, i1_1 - 1, i2_1], T.float32(0), dtype="float32") | ||
for i0_0, i1_0, i2_0, i0_1_1, i1_1_1, i2_1_1 in T.grid(1, 1, 2, 1, 1, 8): | ||
for i3_0, i4_0, i0_2, i1_2, i2_2, i3_1, i4_1, i0_3, i1_3, i2_3 in T.grid(1, 64, 1, 64, 8, 3, 1, 1, 2, 1): | ||
with T.block("conv1d_nlc"): | ||
n = T.axis.spatial(1, i0_0 + i0_1_1 + i0_2 + i0_3) | ||
l = T.axis.spatial(128, i1_1_1 * 128 + i1_0 * 128 + i1_2 * 2 + i1_3) | ||
co = T.axis.spatial(128, (i2_0 * 8 + i2_1_1) * 8 + i2_2 + i2_3) | ||
rl = T.axis.reduce(3, i3_0 * 3 + i3_1) | ||
rc = T.axis.reduce(64, i4_0 + i4_1) | ||
T.reads(PadInput[n, l * 2 + rl, co // 128 * 64 + rc], weight[rl, rc, co]) | ||
T.writes(conv1d_nlc_global[n, l, co]) | ||
T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) | ||
with T.init(): | ||
conv1d_nlc_global[n, l, co] = T.float32(0) | ||
conv1d_nlc_global[n, l, co] = conv1d_nlc_global[n, l, co] + PadInput[n, l * 2 + rl, co // 128 * 64 + rc] * weight[rl, rc, co] | ||
for ax0, ax1, ax2 in T.grid(1, 128, 8): | ||
with T.block("conv1d_nlc_global"): | ||
v0, v1 = T.axis.remap("SS", [ax0, ax1]) | ||
v2 = T.axis.spatial(128, i2_0 * 64 + i2_1_1 * 8 + ax2) | ||
T.reads(conv1d_nlc_global[v0, v1, v2]) | ||
T.writes(conv1d_nlc[v0, v1, v2]) | ||
conv1d_nlc[v0, v1, v2] = conv1d_nlc_global[v0, v1, v2] | ||
@T.prim_func | ||
def c1d_1(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
# body | ||
with T.block("root"): | ||
T.reads() | ||
T.writes() | ||
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":512, "meta_schedule.vectorize":64}) | ||
PadInput = T.alloc_buffer([1, 258, 64], dtype="float32") | ||
conv1d_nlc_global = T.alloc_buffer([1, 128, 128], dtype="float32") | ||
for i0_0, i1_0, i2_0 in T.grid(1, 1, 2): | ||
for i0_1, i1_1, i2_1 in T.grid(1, 1, 8): | ||
for ax0, ax1, ax2 in T.grid(1, 257, 64): | ||
with T.block("PadInput"): | ||
i0 = T.axis.spatial(1, ax0) | ||
i1 = T.axis.spatial(258, ax1) | ||
i2 = T.axis.spatial(64, ax2) | ||
T.reads(inputs[i0, i1 - 1, i2]) | ||
T.writes(PadInput[i0, i1, i2]) | ||
PadInput[i0, i1, i2] = T.if_then_else(1 <= i1 and i1 < 257, inputs[i0, i1 - 1, i2], T.float32(0), dtype="float32") | ||
for i3_0, i4_0, i0_2, i1_2, i2_2, i3_1, i4_1, i0_3, i1_3, i2_3 in T.grid(1, 64, 1, 64, 8, 3, 1, 1, 2, 1): | ||
with T.block("conv1d_nlc"): | ||
n = T.axis.spatial(1, i0_0 + i0_1 + i0_2 + i0_3) | ||
l = T.axis.spatial(128, i1_1 * 128 + i1_0 * 128 + i1_2 * 2 + i1_3) | ||
co = T.axis.spatial(128, (i2_0 * 8 + i2_1) * 8 + i2_2 + i2_3) | ||
rl = T.axis.reduce(3, i3_0 * 3 + i3_1) | ||
rc = T.axis.reduce(64, i4_0 + i4_1) | ||
T.reads(PadInput[n, l * 2 + rl, co // 128 * 64 + rc], weight[rl, rc, co]) | ||
T.writes(conv1d_nlc_global[n, l, co]) | ||
T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) | ||
with T.init(): | ||
conv1d_nlc_global[n, l, co] = T.float32(0) | ||
conv1d_nlc_global[n, l, co] = conv1d_nlc_global[n, l, co] + PadInput[n, l * 2 + rl, co // 128 * 64 + rc] * weight[rl, rc, co] | ||
for ax0, ax1, ax2 in T.grid(1, 128, 64): | ||
with T.block("conv1d_nlc_global"): | ||
v0, v1 = T.axis.remap("SS", [ax0, ax1]) | ||
v2 = T.axis.spatial(128, i2_0 * 64 + ax2) | ||
T.reads(conv1d_nlc_global[v0, v1, v2]) | ||
T.writes(conv1d_nlc[v0, v1, v2]) | ||
conv1d_nlc[v0, v1, v2] = conv1d_nlc_global[v0, v1, v2] | ||
|
||
@T.prim_func | ||
def c1d_2(inputs: T.Buffer[(1, 256, 64), "float32"], weight: T.Buffer[(3, 64, 128), "float32"], conv1d_nlc: T.Buffer[(1, 128, 128), "float32"]) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
# body | ||
with T.block("root"): | ||
T.reads() | ||
T.writes() | ||
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64}) | ||
for i0_0, i1_0, i2_0, i0_1, i1_1, i2_1, i3_0, i4_0, i0_2, i1_2, i2_2, i3_1, i4_1, i0_3, i1_3, i2_3 in T.grid(1, 1, 2, 1, 1, 8, 1, 64, 1, 64, 8, 3, 1, 1, 2, 1): | ||
with T.block("conv1d_nlc"): | ||
n = T.axis.spatial(1, i0_0 + i0_1 + i0_2 + i0_3) | ||
l = T.axis.spatial(128, i1_1 * 128 + i1_0 * 128 + i1_2 * 2 + i1_3) | ||
co = T.axis.spatial(128, (i2_0 * 8 + i2_1) * 8 + i2_2 + i2_3) | ||
rl = T.axis.reduce(3, i3_0 * 3 + i3_1) | ||
rc = T.axis.reduce(64, i4_0 + i4_1) | ||
T.reads(inputs[n, l * 2 + rl - 1, co // 128 * 64 + rc], weight[rl, rc, co]) | ||
T.writes(conv1d_nlc[n, l, co]) | ||
T.block_attr({"meta_schedule.tiling_structure":"SSRSRS"}) | ||
with T.init(): | ||
conv1d_nlc[n, l, co] = T.float32(0) | ||
conv1d_nlc[n, l, co] = conv1d_nlc[n, l, co] + T.if_then_else(1 <= l * 2 + rl and l * 2 + rl < 257, inputs[n, l * 2 + rl - 1, co // 128 * 64 + rc], T.float32(0), dtype="float32") * weight[rl, rc, co] | ||
# fmt: on | ||
|
||
decision_0 = [ | ||
("SamplePerfectTile", [1, 1, 1, 1]), | ||
("SamplePerfectTile", [1, 1, 64, 2]), | ||
("SamplePerfectTile", [2, 8, 8, 1]), | ||
("SamplePerfectTile", [1, 3]), | ||
("SamplePerfectTile", [64, 1]), | ||
("SampleCategorical", 3), | ||
("SampleComputeLocation", -1), | ||
] | ||
decision_1 = [ | ||
("SamplePerfectTile", [1, 1, 1, 1]), | ||
("SamplePerfectTile", [1, 1, 64, 2]), | ||
("SamplePerfectTile", [2, 8, 8, 1]), | ||
("SamplePerfectTile", [1, 3]), | ||
("SamplePerfectTile", [64, 1]), | ||
("SampleCategorical", 3), | ||
("SampleComputeLocation", 5), | ||
] | ||
decision_2 = [ | ||
("SamplePerfectTile", [1, 1, 1, 1]), | ||
("SamplePerfectTile", [1, 1, 64, 2]), | ||
("SamplePerfectTile", [2, 8, 8, 1]), | ||
("SamplePerfectTile", [1, 3]), | ||
("SamplePerfectTile", [64, 1]), | ||
("SampleCategorical", 1), | ||
("SampleComputeLocation", -2), | ||
] | ||
|
||
mod = create_te_workload("C1D", 0) | ||
actual = ms.TuneContext( | ||
mod=mod, | ||
target=_target(), | ||
space_generator=ms.space_generator.PostOrderApply(), | ||
sch_rules="default", | ||
).generate_design_space() | ||
check_sketches( | ||
mod, | ||
sketches=actual, | ||
expected_mods=[c1d_0, c1d_1, c1d_2], | ||
expected_decisions=[decision_0, decision_1, decision_2], | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_cpu_c1d() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters