Skip to content

Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models (iScience)

License

Notifications You must be signed in to change notification settings

ymcui/mrc-model-analysis

Repository files navigation

MRC-Model-Analysis

This repository contains source code for our paper "Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models" (formerly "Understanding Attention in Machine Reading Comprehension. https://arxiv.org/abs/2108.11574v1").

(new) If you would like to know how to visualize attention zones, we have a step-by-step protocol for your perusal.



Requirements

Python 3.7.3
TensorFlow 1.15.3

Note:

  1. All experiments are carried out using TPU. If you are using other training devices, please adjust these scripts accordingly.
  2. The script might also work under TensorFlow 1.13 ~ 1.15.

How to run SQuAD baseline (TPU)

Run the following script (train_squad.sh) with proper replacement of a few pre-defined variables.

GS_BUCKET=gs://your-bucket
TPU_NAME=your-tpu-name
TPU_ZONE=your-tpu-zone
MODEL_OUTPUT_DIR=$GS_BUCKET/path-to-output-dir
python -u run_squad.py \
  --vocab_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/vocab.txt \
  --bert_config_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_config.json \
  --init_checkpoint=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_model.ckpt \
  --do_train=True \
  --train_file=./squad/train-v1.1.json \
  --do_predict=True \
  --predict_file=./squad/dev-v1.1.json \
  --train_batch_size=64 \
  --predict_batch_size=32 \
  --num_train_epochs=3.0 \
  --max_seq_length=512 \
  --doc_stride=128 \
  --learning_rate=3e-5 \
  --version_2_with_negative=False \
  --output_dir=$MODEL_OUTPUT_DIR \
  --do_lower_case=False \
  --use_tpu=True \
  --tpu_name=$TPU_NAME \
  --tpu_zone=$TPU_ZONE
  1. Put pre-trained BERT checkpoint in bert directory. Note that TPU requires a Google Cloud Storage bucket to save/load model files, which is different from local file system. If you are using GPU/CPU, please ignore $GS_BUCKET variable and just point your local file path.

  2. Download SQuAD (v1.1) train/dev files:

  3. Put SQuAD train/dev files in squad directory:

    • mkdir squad && mv train-v1.1.json dev-v1.1.json squad

How to run CMRC 2018 baseline (TPU)

Run the following script (train_cmrc2018.sh) with proper replacement of a few pre-defined variables.

GS_BUCKET=gs://your-bucket
TPU_NAME=your-tpu-name
TPU_ZONE=your-tpu-zone
MODEL_OUTPUT_DIR=$GS_BUCKET/path-to-output-dir
python -u run_cmrc2018.py \
  --vocab_file=$GS_BUCKET/bert/chinese_L-12_H-768_A-12/vocab.txt \
  --bert_config_file=$GS_BUCKET/bert/chinese_L-12_H-768_A-12/bert_config.json \
  --init_checkpoint=$GS_BUCKET/bert/chinese_L-12_H-768_A-12/bert_model.ckpt \
  --do_train=True \
  --train_file=./cmrc2018/cmrc2018_train.json \
  --do_predict=True \
  --predict_file=./cmrc2018/cmrc2018_dev.json \
  --train_batch_size=64 \
  --predict_batch_size=32 \
  --num_train_epochs=2 \
  --max_seq_length=512 \
  --doc_stride=128 \
  --learning_rate=3e-5 \
  --do_lower_case=True \
  --output_dir=$MODEL_OUTPUT_DIR \
  --use_tpu=True \
  --tpu_name=$TPU_NAME \
  --tpu_zone=$TPU_ZONE
  1. Put pre-trained BERT checkpoint in bert directory. Note that TPU requires a Google Cloud Storage bucket to save/load model files, which is different from local file system. If you are using GPU/CPU, please ignore $GS_BUCKET variable and just point your local file path.

  2. Download CMRC 2018 train/dev file:

  3. Put CMRC 2018 train/dev files in cmrc2018 directory

    • mkdir cmrc2018 && mv train-v1.1.json dev-v1.1.json cmrc2018

How to mask attention zones

Simply pass an additional argument --mask_zone and --mask_layer to run_squad.py or run_cmrc2018.py script when decoding.

--mask_zone argument

The followings are valid values for --mask_zone:

  • "q2": masking Q2 zone
  • "q2p": masking Q2P zone
  • "p2q": masking P2Q zone
  • "p2": masking P2 zone
  • "all": masking all zones

--mask_layer argument

Specify which layer should be masked. The starting index is 0. For example, in BERT-base, the index for the first transformer layer is 0 and the last is 11.

Visualization (new)

Please consult our detailed protocol that was published in STAR Protocols. The presented protocol provides a step-by-step guideline on how to visualize attention zones in machine reading comprehension models.

See: Visualizing attention zones in machine reading comprehension models



Citation

If your find our work helpful, please consider cite our paper.

@article{cui-etal-2022-mrc,
      title = {Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models},
      author = {Cui, Yiming and Zhang, Wei-Nan and Che, Wanxiang and Liu, Ting and Chen, Zhigang and Wang, Shijin},
      journal = {iScience},
      volume = {25},
      number = {5},
      pages = {104176},
      year = {2022},
      issn = {2589-0042},
      doi = {https://doi.org/10.1016/j.isci.2022.104176},
      url = {https://www.sciencedirect.com/science/article/pii/S2589004222004461},
}

Also, if you find our step-by-step protocol useful, please cite the following paper.

@article{cui-2022-mrc-protocol,
title = {Visualizing attention zones in machine reading comprehension models},
journal = {STAR Protocols},
volume = {3},
number = {3},
pages = {101481},
year = {2022},
issn = {2666-1667},
doi = {https://doi.org/10.1016/j.xpro.2022.101481},
author = {Yiming Cui and Wei-Nan Zhang and Ting Liu},
}

Zenodo Archive

DOI

About

Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models (iScience)

Topics

Resources

License

Stars

Watchers

Forks