This repository contains source code for our paper "Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models" (formerly "Understanding Attention in Machine Reading Comprehension. https://arxiv.org/abs/2108.11574v1").
- Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models
- Yiming Cui, Wei-Nan Zhang, Wanxiang Che, Ting Liu, Zhigang Chen, Shijin Wang
- Published in iScience, Cell Press
(new) If you would like to know how to visualize attention zones, we have a step-by-step protocol for your perusal.
- Visualizing attention zones in machine reading comprehension models
- Yiming Cui, Wei-Nan Zhang, Ting Liu
- Published in STAR Protocols, Cell Press
Python 3.7.3
TensorFlow 1.15.3
Note:
- All experiments are carried out using TPU. If you are using other training devices, please adjust these scripts accordingly.
- The script might also work under TensorFlow 1.13 ~ 1.15.
Run the following script (train_squad.sh
) with proper replacement of a few pre-defined variables.
GS_BUCKET=gs://your-bucket
TPU_NAME=your-tpu-name
TPU_ZONE=your-tpu-zone
MODEL_OUTPUT_DIR=$GS_BUCKET/path-to-output-dir
python -u run_squad.py \
--vocab_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/vocab.txt \
--bert_config_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_model.ckpt \
--do_train=True \
--train_file=./squad/train-v1.1.json \
--do_predict=True \
--predict_file=./squad/dev-v1.1.json \
--train_batch_size=64 \
--predict_batch_size=32 \
--num_train_epochs=3.0 \
--max_seq_length=512 \
--doc_stride=128 \
--learning_rate=3e-5 \
--version_2_with_negative=False \
--output_dir=$MODEL_OUTPUT_DIR \
--do_lower_case=False \
--use_tpu=True \
--tpu_name=$TPU_NAME \
--tpu_zone=$TPU_ZONE
-
Put pre-trained BERT checkpoint in
bert
directory. Note that TPU requires a Google Cloud Storage bucket to save/load model files, which is different from local file system. If you are using GPU/CPU, please ignore $GS_BUCKET variable and just point your local file path.- File download: https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
- WARNING: A Google Cloud Storage bucket (path start with
gs://
) is mandatory when using TPU. $TPU_NAME
and$TPU_ZONE
are the TPU information (created by usingctpu
orgcloud compute
commands).
-
Download SQuAD (v1.1) train/dev files:
-
Put SQuAD train/dev files in
squad
directory:mkdir squad && mv train-v1.1.json dev-v1.1.json squad
Run the following script (train_cmrc2018.sh
) with proper replacement of a few pre-defined variables.
GS_BUCKET=gs://your-bucket
TPU_NAME=your-tpu-name
TPU_ZONE=your-tpu-zone
MODEL_OUTPUT_DIR=$GS_BUCKET/path-to-output-dir
python -u run_cmrc2018.py \
--vocab_file=$GS_BUCKET/bert/chinese_L-12_H-768_A-12/vocab.txt \
--bert_config_file=$GS_BUCKET/bert/chinese_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=$GS_BUCKET/bert/chinese_L-12_H-768_A-12/bert_model.ckpt \
--do_train=True \
--train_file=./cmrc2018/cmrc2018_train.json \
--do_predict=True \
--predict_file=./cmrc2018/cmrc2018_dev.json \
--train_batch_size=64 \
--predict_batch_size=32 \
--num_train_epochs=2 \
--max_seq_length=512 \
--doc_stride=128 \
--learning_rate=3e-5 \
--do_lower_case=True \
--output_dir=$MODEL_OUTPUT_DIR \
--use_tpu=True \
--tpu_name=$TPU_NAME \
--tpu_zone=$TPU_ZONE
-
Put pre-trained BERT checkpoint in
bert
directory. Note that TPU requires a Google Cloud Storage bucket to save/load model files, which is different from local file system. If you are using GPU/CPU, please ignore $GS_BUCKET variable and just point your local file path.-
File download: https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
-
WARNING: A Google Cloud Storage bucket (path start with
gs://
) is mandatory when using TPU. -
$TPU_NAME
and$TPU_ZONE
are the TPU information (created by usingctpu
orgcloud compute
commands).
-
-
Download CMRC 2018 train/dev file:
-
Put CMRC 2018 train/dev files in
cmrc2018
directorymkdir cmrc2018 && mv train-v1.1.json dev-v1.1.json cmrc2018
Simply pass an additional argument --mask_zone
and --mask_layer
to run_squad.py
or run_cmrc2018.py
script when decoding.
The followings are valid values for --mask_zone
:
- "q2": masking Q2 zone
- "q2p": masking Q2P zone
- "p2q": masking P2Q zone
- "p2": masking P2 zone
- "all": masking all zones
Specify which layer should be masked. The starting index is 0. For example, in BERT-base, the index for the first transformer layer is 0
and the last is 11
.
Please consult our detailed protocol that was published in STAR Protocols. The presented protocol provides a step-by-step guideline on how to visualize attention zones in machine reading comprehension models.
See: Visualizing attention zones in machine reading comprehension models
If your find our work helpful, please consider cite our paper.
@article{cui-etal-2022-mrc,
title = {Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models},
author = {Cui, Yiming and Zhang, Wei-Nan and Che, Wanxiang and Liu, Ting and Chen, Zhigang and Wang, Shijin},
journal = {iScience},
volume = {25},
number = {5},
pages = {104176},
year = {2022},
issn = {2589-0042},
doi = {https://doi.org/10.1016/j.isci.2022.104176},
url = {https://www.sciencedirect.com/science/article/pii/S2589004222004461},
}
Also, if you find our step-by-step protocol useful, please cite the following paper.
@article{cui-2022-mrc-protocol,
title = {Visualizing attention zones in machine reading comprehension models},
journal = {STAR Protocols},
volume = {3},
number = {3},
pages = {101481},
year = {2022},
issn = {2666-1667},
doi = {https://doi.org/10.1016/j.xpro.2022.101481},
author = {Yiming Cui and Wei-Nan Zhang and Ting Liu},
}