Official Pytorch implementation of "Deep Hash Distillation for Image Retrieval" Accepted to ECCV2022 - DHD
Prepare requirements by following command.
pip install -r requirements.txt
We use public benchmark datasets: ImageNet, NUS-WIDE, MS COCO.
Image file name and corresponding labels are provided in ./data
.
Datasets can be downloaded here: NUS-WIDE / MS COCO
For ImageNet, please download through official website ImageNet and follow our data configuration.
Example
- Train DHD model with ImageNet, AlexNet backbone, 64-bit, temperature scaling with 0.2
python main_DHD.py --dataset=imagenet --encoder=AlexNet --N_bits=64 --temp=0.2
python main_DHD.py --help
will provide detailed explanation of each argument.
S: Swin Transformer, R: ResNet, A: AlexNet
ImageNet
NUS-WIDE MS COCO@inproceedings{DHD,
title={Deep Hash Distillation for Image Retrieval},
author={Young Kyun Jang, Geonmo Gu, Byungsoo Ko, Isaac Kang, Nam Ik Cho},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2022}
}