Skip to content

youngkyunJang/Deep-Hash-Distillation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Hash Distillation for Image Retrieval (ECCV2022)

Official Pytorch implementation of "Deep Hash Distillation for Image Retrieval" Accepted to ECCV2022 - DHD

Overall training procedure of DHD

Requirements

Prepare requirements by following command.

pip install -r requirements.txt

Train DHD models

Prepare datasets

We use public benchmark datasets: ImageNet, NUS-WIDE, MS COCO. Image file name and corresponding labels are provided in ./data.

Datasets can be downloaded here: NUS-WIDE / MS COCO

For ImageNet, please download through official website ImageNet and follow our data configuration.

Example

  • Train DHD model with ImageNet, AlexNet backbone, 64-bit, temperature scaling with 0.2
  • python main_DHD.py --dataset=imagenet --encoder=AlexNet --N_bits=64 --temp=0.2

python main_DHD.py --help will provide detailed explanation of each argument.

Retrieval Results with Different Backbone

S: Swin Transformer, R: ResNet, A: AlexNet

ImageNet

NUS-WIDE

MS COCO

Citation

@inproceedings{DHD,
  title={Deep Hash Distillation for Image Retrieval},
  author={Young Kyun Jang, Geonmo Gu, Byungsoo Ko, Isaac Kang, Nam Ik Cho},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2022}
}