Skip to content

Commit

Permalink
[Feature]: Support calculating FLOPs of detectors (open-mmlab#9777)
Browse files Browse the repository at this point in the history
  • Loading branch information
zwhus authored Feb 27, 2023
1 parent ffc2bb3 commit 33d073b
Show file tree
Hide file tree
Showing 4 changed files with 421 additions and 42 deletions.
295 changes: 295 additions & 0 deletions .dev_scripts/benchmark_valid_flops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
import logging
import re
import tempfile
from argparse import ArgumentParser
from collections import OrderedDict
from functools import partial
from pathlib import Path

import numpy as np
import pandas as pd
import torch
from mmengine import Config, DictAction
from mmengine.analysis import get_model_complexity_info
from mmengine.analysis.print_helper import _format_size
from mmengine.fileio import FileClient
from mmengine.logging import MMLogger
from mmengine.model import revert_sync_batchnorm
from mmengine.runner import Runner
from modelindex.load_model_index import load
from rich.console import Console
from rich.table import Table
from rich.text import Text
from tqdm import tqdm

from mmdet.registry import MODELS
from mmdet.utils import register_all_modules

console = Console()
MMDET_ROOT = Path(__file__).absolute().parents[1]


def parse_args():
parser = ArgumentParser(description='Valid all models in model-index.yml')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[1280, 800],
help='input image size')
parser.add_argument(
'--checkpoint_root',
help='Checkpoint file root path. If set, load checkpoint before test.')
parser.add_argument('--img', default='demo/demo.jpg', help='Image file')
parser.add_argument('--models', nargs='+', help='models name to inference')
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='The batch size during the inference.')
parser.add_argument(
'--flops', action='store_true', help='Get Flops and Params of models')
parser.add_argument(
'--flops-str',
action='store_true',
help='Output FLOPs and params counts in a string form.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--size_divisor',
type=int,
default=32,
help='Pad the input image, the minimum size that is divisible '
'by size_divisor, -1 means do not pad the image.')
args = parser.parse_args()
return args


def inference(config_file, checkpoint, work_dir, args, exp_name):
logger = MMLogger.get_instance(name='MMLogger')
logger.warning('if you want test flops, please make sure torch>=1.12')
cfg = Config.fromfile(config_file)
cfg.work_dir = work_dir
cfg.load_from = checkpoint
cfg.log_level = 'WARN'
cfg.experiment_name = exp_name
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

# forward the model
result = {'model': config_file.stem}

if args.flops:

if len(args.shape) == 1:
h = w = args.shape[0]
elif len(args.shape) == 2:
h, w = args.shape
else:
raise ValueError('invalid input shape')
divisor = args.size_divisor
if divisor > 0:
h = int(np.ceil(h / divisor)) * divisor
w = int(np.ceil(w / divisor)) * divisor

input_shape = (3, h, w)
result['resolution'] = input_shape

try:
cfg = Config.fromfile(config_file)
if hasattr(cfg, 'head_norm_cfg'):
cfg['head_norm_cfg'] = dict(type='SyncBN', requires_grad=True)
cfg['model']['roi_head']['bbox_head']['norm_cfg'] = dict(
type='SyncBN', requires_grad=True)
cfg['model']['roi_head']['mask_head']['norm_cfg'] = dict(
type='SyncBN', requires_grad=True)

if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

model = MODELS.build(cfg.model)
input = torch.rand(1, *input_shape)
if torch.cuda.is_available():
model.cuda()
input = input.cuda()
model = revert_sync_batchnorm(model)
inputs = (input, )
model.eval()
outputs = get_model_complexity_info(
model, input_shape, inputs, show_table=False, show_arch=False)
flops = outputs['flops']
params = outputs['params']
activations = outputs['activations']
result['Get Types'] = 'direct'
except: # noqa 772
logger = MMLogger.get_instance(name='MMLogger')
logger.warning(
'Direct get flops failed, try to get flops with data')
cfg = Config.fromfile(config_file)
if hasattr(cfg, 'head_norm_cfg'):
cfg['head_norm_cfg'] = dict(type='SyncBN', requires_grad=True)
cfg['model']['roi_head']['bbox_head']['norm_cfg'] = dict(
type='SyncBN', requires_grad=True)
cfg['model']['roi_head']['mask_head']['norm_cfg'] = dict(
type='SyncBN', requires_grad=True)
data_loader = Runner.build_dataloader(cfg.val_dataloader)
data_batch = next(iter(data_loader))
model = MODELS.build(cfg.model)
if torch.cuda.is_available():
model = model.cuda()
model = revert_sync_batchnorm(model)
model.eval()
_forward = model.forward
data = model.data_preprocessor(data_batch)
del data_loader
model.forward = partial(
_forward, data_samples=data['data_samples'])
outputs = get_model_complexity_info(
model,
input_shape,
data['inputs'],
show_table=False,
show_arch=False)
flops = outputs['flops']
params = outputs['params']
activations = outputs['activations']
result['Get Types'] = 'dataloader'

if args.flops_str:
flops = _format_size(flops)
params = _format_size(params)
activations = _format_size(activations)

result['flops'] = flops
result['params'] = params

return result


def show_summary(summary_data, args):
table = Table(title='Validation Benchmark Regression Summary')
table.add_column('Model')
table.add_column('Validation')
table.add_column('Resolution (c, h, w)')
if args.flops:
table.add_column('Flops', justify='right', width=11)
table.add_column('Params', justify='right')

for model_name, summary in summary_data.items():
row = [model_name]
valid = summary['valid']
color = 'green' if valid == 'PASS' else 'red'
row.append(f'[{color}]{valid}[/{color}]')
if valid == 'PASS':
row.append(str(summary['resolution']))
if args.flops:
row.append(str(summary['flops']))
row.append(str(summary['params']))
table.add_row(*row)

console.print(table)
table_data = {
x.header: [Text.from_markup(y).plain for y in x.cells]
for x in table.columns
}
table_pd = pd.DataFrame(table_data)
table_pd.to_csv('./mmdetection_flops.csv')


# Sample test whether the inference code is correct
def main(args):
register_all_modules()
model_index_file = MMDET_ROOT / 'model-index.yml'
model_index = load(str(model_index_file))
model_index.build_models_with_collections()
models = OrderedDict({model.name: model for model in model_index.models})

logger = MMLogger(
'validation',
logger_name='validation',
log_file='benchmark_test_image.log',
log_level=logging.INFO)

if args.models:
patterns = [
re.compile(pattern.replace('+', '_')) for pattern in args.models
]
filter_models = {}
for k, v in models.items():
k = k.replace('+', '_')
if any([re.match(pattern, k) for pattern in patterns]):
filter_models[k] = v
if len(filter_models) == 0:
print('No model found, please specify models in:')
print('\n'.join(models.keys()))
return
models = filter_models

summary_data = {}
tmpdir = tempfile.TemporaryDirectory()
for model_name, model_info in tqdm(models.items()):

if model_info.config is None:
continue

model_info.config = model_info.config.replace('%2B', '+')
config = Path(model_info.config)

try:
config.exists()
except: # noqa 722
logger.error(f'{model_name}: {config} not found.')
continue

logger.info(f'Processing: {model_name}')

http_prefix = 'https://download.openmmlab.com/mmdetection/'
if args.checkpoint_root is not None:
root = args.checkpoint_root
if 's3://' in args.checkpoint_root:
from petrel_client.common.exception import AccessDeniedError
file_client = FileClient.infer_client(uri=root)
checkpoint = file_client.join_path(
root, model_info.weights[len(http_prefix):])
try:
exists = file_client.exists(checkpoint)
except AccessDeniedError:
exists = False
else:
checkpoint = Path(root) / model_info.weights[len(http_prefix):]
exists = checkpoint.exists()
if exists:
checkpoint = str(checkpoint)
else:
print(f'WARNING: {model_name}: {checkpoint} not found.')
checkpoint = None
else:
checkpoint = None

try:
# build the model from a config file and a checkpoint file
result = inference(MMDET_ROOT / config, checkpoint, tmpdir.name,
args, model_name)
result['valid'] = 'PASS'
except Exception: # noqa 722
import traceback
logger.error(f'"{config}" :\n{traceback.format_exc()}')
result = {'valid': 'FAIL'}

summary_data[model_name] = result

tmpdir.cleanup()
show_summary(summary_data, args)


if __name__ == '__main__':
args = parse_args()
main(args)
8 changes: 4 additions & 4 deletions configs/simple_copy_paste/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ Collections:
Models:
- Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_270k_coco
In Collection: SimpleCopyPaste
Config: configs/simplecopypaste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-270k_coco.py
Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-270k_coco.py
Metadata:
Training Memory (GB): 7.2
Iterations: 270000
Expand All @@ -42,7 +42,7 @@ Models:

- Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_90k_coco
In Collection: SimpleCopyPaste
Config: configs/simplecopypaste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-90k_coco.py
Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-90k_coco.py
Metadata:
Training Memory (GB): 7.2
Iterations: 90000
Expand All @@ -59,7 +59,7 @@ Models:

- Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_270k_coco
In Collection: SimpleCopyPaste
Config: configs/simplecopypaste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-270k_coco.py
Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-270k_coco.py
Metadata:
Training Memory (GB): 7.2
Iterations: 270000
Expand All @@ -76,7 +76,7 @@ Models:

- Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_90k_coco
In Collection: SimpleCopyPaste
Config: configs/simplecopypaste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-90k_coco.py
Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-90k_coco.py
Metadata:
Training Memory (GB): 7.2
Iterations: 90000
Expand Down
6 changes: 5 additions & 1 deletion mmdet/models/roi_heads/sparse_roi_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -578,7 +578,11 @@ def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_img_metas=batch_img_metas,
batch_gt_instances=batch_gt_instances)
bbox_results.pop('loss_bbox')
all_stage_bbox_results.append((bbox_results, ))
# torch.jit does not support obj:SamplingResult
bbox_results.pop('results_list')
bbox_res = bbox_results.copy()
bbox_res.pop('sampling_results')
all_stage_bbox_results.append((bbox_res, ))

if self.with_mask:
attn_feats = bbox_results['attn_feats']
Expand Down
Loading

0 comments on commit 33d073b

Please sign in to comment.