forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature]: Support calculating FLOPs of detectors (open-mmlab#9777)
- Loading branch information
Showing
4 changed files
with
421 additions
and
42 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
import logging | ||
import re | ||
import tempfile | ||
from argparse import ArgumentParser | ||
from collections import OrderedDict | ||
from functools import partial | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
from mmengine import Config, DictAction | ||
from mmengine.analysis import get_model_complexity_info | ||
from mmengine.analysis.print_helper import _format_size | ||
from mmengine.fileio import FileClient | ||
from mmengine.logging import MMLogger | ||
from mmengine.model import revert_sync_batchnorm | ||
from mmengine.runner import Runner | ||
from modelindex.load_model_index import load | ||
from rich.console import Console | ||
from rich.table import Table | ||
from rich.text import Text | ||
from tqdm import tqdm | ||
|
||
from mmdet.registry import MODELS | ||
from mmdet.utils import register_all_modules | ||
|
||
console = Console() | ||
MMDET_ROOT = Path(__file__).absolute().parents[1] | ||
|
||
|
||
def parse_args(): | ||
parser = ArgumentParser(description='Valid all models in model-index.yml') | ||
parser.add_argument( | ||
'--shape', | ||
type=int, | ||
nargs='+', | ||
default=[1280, 800], | ||
help='input image size') | ||
parser.add_argument( | ||
'--checkpoint_root', | ||
help='Checkpoint file root path. If set, load checkpoint before test.') | ||
parser.add_argument('--img', default='demo/demo.jpg', help='Image file') | ||
parser.add_argument('--models', nargs='+', help='models name to inference') | ||
parser.add_argument( | ||
'--batch-size', | ||
type=int, | ||
default=1, | ||
help='The batch size during the inference.') | ||
parser.add_argument( | ||
'--flops', action='store_true', help='Get Flops and Params of models') | ||
parser.add_argument( | ||
'--flops-str', | ||
action='store_true', | ||
help='Output FLOPs and params counts in a string form.') | ||
parser.add_argument( | ||
'--cfg-options', | ||
nargs='+', | ||
action=DictAction, | ||
help='override some settings in the used config, the key-value pair ' | ||
'in xxx=yyy format will be merged into config file. If the value to ' | ||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | ||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | ||
'Note that the quotation marks are necessary and that no white space ' | ||
'is allowed.') | ||
parser.add_argument( | ||
'--size_divisor', | ||
type=int, | ||
default=32, | ||
help='Pad the input image, the minimum size that is divisible ' | ||
'by size_divisor, -1 means do not pad the image.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def inference(config_file, checkpoint, work_dir, args, exp_name): | ||
logger = MMLogger.get_instance(name='MMLogger') | ||
logger.warning('if you want test flops, please make sure torch>=1.12') | ||
cfg = Config.fromfile(config_file) | ||
cfg.work_dir = work_dir | ||
cfg.load_from = checkpoint | ||
cfg.log_level = 'WARN' | ||
cfg.experiment_name = exp_name | ||
if args.cfg_options is not None: | ||
cfg.merge_from_dict(args.cfg_options) | ||
|
||
# forward the model | ||
result = {'model': config_file.stem} | ||
|
||
if args.flops: | ||
|
||
if len(args.shape) == 1: | ||
h = w = args.shape[0] | ||
elif len(args.shape) == 2: | ||
h, w = args.shape | ||
else: | ||
raise ValueError('invalid input shape') | ||
divisor = args.size_divisor | ||
if divisor > 0: | ||
h = int(np.ceil(h / divisor)) * divisor | ||
w = int(np.ceil(w / divisor)) * divisor | ||
|
||
input_shape = (3, h, w) | ||
result['resolution'] = input_shape | ||
|
||
try: | ||
cfg = Config.fromfile(config_file) | ||
if hasattr(cfg, 'head_norm_cfg'): | ||
cfg['head_norm_cfg'] = dict(type='SyncBN', requires_grad=True) | ||
cfg['model']['roi_head']['bbox_head']['norm_cfg'] = dict( | ||
type='SyncBN', requires_grad=True) | ||
cfg['model']['roi_head']['mask_head']['norm_cfg'] = dict( | ||
type='SyncBN', requires_grad=True) | ||
|
||
if args.cfg_options is not None: | ||
cfg.merge_from_dict(args.cfg_options) | ||
|
||
model = MODELS.build(cfg.model) | ||
input = torch.rand(1, *input_shape) | ||
if torch.cuda.is_available(): | ||
model.cuda() | ||
input = input.cuda() | ||
model = revert_sync_batchnorm(model) | ||
inputs = (input, ) | ||
model.eval() | ||
outputs = get_model_complexity_info( | ||
model, input_shape, inputs, show_table=False, show_arch=False) | ||
flops = outputs['flops'] | ||
params = outputs['params'] | ||
activations = outputs['activations'] | ||
result['Get Types'] = 'direct' | ||
except: # noqa 772 | ||
logger = MMLogger.get_instance(name='MMLogger') | ||
logger.warning( | ||
'Direct get flops failed, try to get flops with data') | ||
cfg = Config.fromfile(config_file) | ||
if hasattr(cfg, 'head_norm_cfg'): | ||
cfg['head_norm_cfg'] = dict(type='SyncBN', requires_grad=True) | ||
cfg['model']['roi_head']['bbox_head']['norm_cfg'] = dict( | ||
type='SyncBN', requires_grad=True) | ||
cfg['model']['roi_head']['mask_head']['norm_cfg'] = dict( | ||
type='SyncBN', requires_grad=True) | ||
data_loader = Runner.build_dataloader(cfg.val_dataloader) | ||
data_batch = next(iter(data_loader)) | ||
model = MODELS.build(cfg.model) | ||
if torch.cuda.is_available(): | ||
model = model.cuda() | ||
model = revert_sync_batchnorm(model) | ||
model.eval() | ||
_forward = model.forward | ||
data = model.data_preprocessor(data_batch) | ||
del data_loader | ||
model.forward = partial( | ||
_forward, data_samples=data['data_samples']) | ||
outputs = get_model_complexity_info( | ||
model, | ||
input_shape, | ||
data['inputs'], | ||
show_table=False, | ||
show_arch=False) | ||
flops = outputs['flops'] | ||
params = outputs['params'] | ||
activations = outputs['activations'] | ||
result['Get Types'] = 'dataloader' | ||
|
||
if args.flops_str: | ||
flops = _format_size(flops) | ||
params = _format_size(params) | ||
activations = _format_size(activations) | ||
|
||
result['flops'] = flops | ||
result['params'] = params | ||
|
||
return result | ||
|
||
|
||
def show_summary(summary_data, args): | ||
table = Table(title='Validation Benchmark Regression Summary') | ||
table.add_column('Model') | ||
table.add_column('Validation') | ||
table.add_column('Resolution (c, h, w)') | ||
if args.flops: | ||
table.add_column('Flops', justify='right', width=11) | ||
table.add_column('Params', justify='right') | ||
|
||
for model_name, summary in summary_data.items(): | ||
row = [model_name] | ||
valid = summary['valid'] | ||
color = 'green' if valid == 'PASS' else 'red' | ||
row.append(f'[{color}]{valid}[/{color}]') | ||
if valid == 'PASS': | ||
row.append(str(summary['resolution'])) | ||
if args.flops: | ||
row.append(str(summary['flops'])) | ||
row.append(str(summary['params'])) | ||
table.add_row(*row) | ||
|
||
console.print(table) | ||
table_data = { | ||
x.header: [Text.from_markup(y).plain for y in x.cells] | ||
for x in table.columns | ||
} | ||
table_pd = pd.DataFrame(table_data) | ||
table_pd.to_csv('./mmdetection_flops.csv') | ||
|
||
|
||
# Sample test whether the inference code is correct | ||
def main(args): | ||
register_all_modules() | ||
model_index_file = MMDET_ROOT / 'model-index.yml' | ||
model_index = load(str(model_index_file)) | ||
model_index.build_models_with_collections() | ||
models = OrderedDict({model.name: model for model in model_index.models}) | ||
|
||
logger = MMLogger( | ||
'validation', | ||
logger_name='validation', | ||
log_file='benchmark_test_image.log', | ||
log_level=logging.INFO) | ||
|
||
if args.models: | ||
patterns = [ | ||
re.compile(pattern.replace('+', '_')) for pattern in args.models | ||
] | ||
filter_models = {} | ||
for k, v in models.items(): | ||
k = k.replace('+', '_') | ||
if any([re.match(pattern, k) for pattern in patterns]): | ||
filter_models[k] = v | ||
if len(filter_models) == 0: | ||
print('No model found, please specify models in:') | ||
print('\n'.join(models.keys())) | ||
return | ||
models = filter_models | ||
|
||
summary_data = {} | ||
tmpdir = tempfile.TemporaryDirectory() | ||
for model_name, model_info in tqdm(models.items()): | ||
|
||
if model_info.config is None: | ||
continue | ||
|
||
model_info.config = model_info.config.replace('%2B', '+') | ||
config = Path(model_info.config) | ||
|
||
try: | ||
config.exists() | ||
except: # noqa 722 | ||
logger.error(f'{model_name}: {config} not found.') | ||
continue | ||
|
||
logger.info(f'Processing: {model_name}') | ||
|
||
http_prefix = 'https://download.openmmlab.com/mmdetection/' | ||
if args.checkpoint_root is not None: | ||
root = args.checkpoint_root | ||
if 's3://' in args.checkpoint_root: | ||
from petrel_client.common.exception import AccessDeniedError | ||
file_client = FileClient.infer_client(uri=root) | ||
checkpoint = file_client.join_path( | ||
root, model_info.weights[len(http_prefix):]) | ||
try: | ||
exists = file_client.exists(checkpoint) | ||
except AccessDeniedError: | ||
exists = False | ||
else: | ||
checkpoint = Path(root) / model_info.weights[len(http_prefix):] | ||
exists = checkpoint.exists() | ||
if exists: | ||
checkpoint = str(checkpoint) | ||
else: | ||
print(f'WARNING: {model_name}: {checkpoint} not found.') | ||
checkpoint = None | ||
else: | ||
checkpoint = None | ||
|
||
try: | ||
# build the model from a config file and a checkpoint file | ||
result = inference(MMDET_ROOT / config, checkpoint, tmpdir.name, | ||
args, model_name) | ||
result['valid'] = 'PASS' | ||
except Exception: # noqa 722 | ||
import traceback | ||
logger.error(f'"{config}" :\n{traceback.format_exc()}') | ||
result = {'valid': 'FAIL'} | ||
|
||
summary_data[model_name] = result | ||
|
||
tmpdir.cleanup() | ||
show_summary(summary_data, args) | ||
|
||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.