This is the official implementation of ECCV2024 paper
by Yuanzhi Zhu, Xingcaho Liu, Qiang Liu
This code is based on RectifiedFlow.
python ./train.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--config.expr 1_rectified_flow \
evaluate FID of ckpts from config.eval.begin_ckpt
in ckpt_dir
python ./evaluation_fid.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--ckpt_dir logs/1_rectified_flow \
--config.eval.batch_size 512 --config.eval.num_samples 50000 \
--config.eval.begin_ckpt 1 --config.eval.end_ckpt 0 \
--config.sampling.sample_N 1 --config.sampling.use_ode_sampler euler \
python ./evaluation_fid.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--ckpt_dir logs/1_rectified_flow \
--config.eval.batch_size 512 --config.eval.num_samples 50000 \
--config.eval.begin_ckpt 1 --config.eval.end_ckpt 0 \
sampling all ckpts in sampling_dir
python ./image_sampling.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--sampling_dir "logs/1_rectified_flow" \
--config.eval.batch_size 64
- Sample from 1flows:
--config.sampling.use_ode_sampler rk45
- Sample from 2flows: [
--config.sampling.use_ode_sampler rk45
,--config.sampling.use_ode_sampler heun
+--config.sampling.sample_N 3
,--config.sampling.use_ode_sampler euler
+--config.sampling.sample_N 1
] - Sample from distilled one-step models:
--config.sampling.use_ode_sampler euler
+--config.sampling.sample_N 1
- ImageNet64 80.7M:
--config.model.name DhariwalUNet --config.model.nf 128 --config.model.num_res_blocks 2 --config.model.ch_mult '(1, 2, 2, 4)' --config.data.num_classes 1000 --config.data.image_size 64 --config.model.attn_resolutions '32, 16'
- ImageNet 44.7MM:
--config.model.name DhariwalUNet --config.model.nf 128 --config.model.num_res_blocks 2 --config.model.ch_mult '(1, 2, 2, 2)' --config.data.num_classes 1000 --config.data.image_size 64 --config.model.attn_resolutions '32, 16'
- FFHQ64 27.9M:
--config.model.nf 128 --config.model.num_res_blocks 2 --config.data.image_size 64 --config.model.ch_mult '(1, 2, 2)'
- FFHQ64 15.7M:
--config.model.nf 96 --config.model.num_res_blocks 2 --config.data.image_size 64 --config.model.ch_mult '(1, 2, 2)'
- FFHQ64 7.0M:
--config.model.nf 64 --config.model.num_res_blocks 2 --config.data.image_size 64 --config.model.ch_mult '(1, 2, 2)'
- FFHQ64 3.4M:
--config.model.nf 64 --config.model.num_res_blocks 1 --config.data.image_size 64 --config.model.ch_mult '(1, 1, 2)'
- CIFAR32 27.9M:
--config.model.nf 128 --config.model.num_res_blocks 2 --config.data.image_size 32 --config.model.ch_mult '(1, 2, 2)'
- CIFAR32 15.7M:
--config.model.nf 96 --config.model.num_res_blocks 2 --config.data.image_size 32 --config.model.ch_mult '(1, 2, 2)'
- CIFAR32 7.0M:
--config.model.nf 64 --config.model.num_res_blocks 2 --config.data.image_size 32 --config.model.ch_mult '(1, 2, 2)'
- CIFAR32 3.4M:
--config.model.nf 64 --config.model.num_res_blocks 1 --config.data.image_size 32 --config.model.ch_mult '(1, 1, 2)'
python ./generate_data.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--ckpt_path "logs/1_rectified_flow/checkpoints/checkpoint_14.pth" \
--data_root "reflow_data/1_rectified_flow_50000/" \
--config.sampling.total_number_of_samples 50000 --config.seed 0 \
--config.training.batch_size 512 \
--config.sampling.direction from_z0 \
config.sampling.direction
has 3 options: 'from_z0', 'from_z1', 'random_paired'
python ./train.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--config.data.reflow_data_root "reflow_data/1_rectified_flow_50000/" \
--config.flow.flow_t_schedule uniform \
--config.expr 2_rectified_flow \
--config.flow.h_flip=true \
--config.flow.pre_train_model /logs/1_rectified_flow/checkpoints/checkpoint_14.pth \
python ./train.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--config.expr 2_rectified_flow_500001flow_flip_warmup_300000_28m \
--config.flow.h_flip=true \
--config.training.x0_randomness warmup_300000 \
--config.training.snapshot_freq 50000 \
--config.training.snapshot_sampling 10000 \
--config.data.reflow_data_root "reflow_data/1_rectified_flow_50000/" \
--config.model.nf 128 --config.model.num_res_blocks 2 \
--config.model.ch_mult '(1, 2, 2)' \
must specify config.data.data_root
for reflow training
if config.flow.pre_train_model
is not specified, the model will be trained from scratch.
python ./train.py \
--config ./configs/rectified_flow/cifar10_rf_gaussian.py \
--config.data.reflow_data_root "reflow_data/1_rectified_flow_50000/" \
--config.flow.flow_t_schedule t0 \
--config.training.loss_type lpips \
--config.flow.use_teacher true \
--config.expr 2_rectified_flow_500000bigflow_28m_distill_lpips_use_teacher \
--config.flow.pre_train_model "./logs/2_rectified_flow_500001flow_flip_warmup_300000_28m/checkpoints/checkpoint_16.pth" \
--config.model.nf 128 --config.model.num_res_blocks 2 \
--config.model.ch_mult '(1, 2, 2)' \
checkpoints can be found here on HuggingFace: https://huggingface.co/Yuanzhi/SlimFlow To sample from these checkpoints, please follow the instructions in the README.md of the HuggingFace model.
If you find this repo helpful, please cite:
@inproceedings{zhu2025slimflow,
title={SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow},
author={Zhu, Yuanzhi and Liu, Xingchao and Liu, Qiang},
booktitle={European Conference on Computer Vision},
pages={342--359},
year={2025},
organization={Springer}
}