-
Notifications
You must be signed in to change notification settings - Fork 8.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
40 changed files
with
44,263 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
|
||
# Device configuration | ||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
# Hyper-parameters | ||
input_size = 784 | ||
hidden_size = 500 | ||
num_classes = 10 | ||
num_epochs = 5 | ||
batch_size = 100 | ||
learning_rate = 0.001 | ||
|
||
# MNIST dataset | ||
train_dataset = torchvision.datasets.MNIST(root='../../data', | ||
train=True, | ||
transform=transforms.ToTensor(), | ||
download=True) | ||
|
||
test_dataset = torchvision.datasets.MNIST(root='../../data', | ||
train=False, | ||
transform=transforms.ToTensor()) | ||
|
||
# Data loader | ||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | ||
batch_size=batch_size, | ||
shuffle=True) | ||
|
||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | ||
batch_size=batch_size, | ||
shuffle=False) | ||
|
||
# Fully connected neural network with one hidden layer | ||
class NeuralNet(nn.Module): | ||
def __init__(self, input_size, hidden_size, num_classes): | ||
super(NeuralNet, self).__init__() | ||
self.fc1 = nn.Linear(input_size, hidden_size) | ||
self.relu = nn.ReLU() | ||
self.fc2 = nn.Linear(hidden_size, num_classes) | ||
|
||
def forward(self, x): | ||
out = self.fc1(x) | ||
out = self.relu(out) | ||
out = self.fc2(out) | ||
return out | ||
|
||
model = NeuralNet(input_size, hidden_size, num_classes).to(device) | ||
|
||
# Loss and optimizer | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) | ||
|
||
# Train the model | ||
total_step = len(train_loader) | ||
for epoch in range(num_epochs): | ||
for i, (images, labels) in enumerate(train_loader): | ||
# Move tensors to the configured device | ||
images = images.reshape(-1, 28*28).to(device) | ||
labels = labels.to(device) | ||
|
||
# Forward pass | ||
outputs = model(images) | ||
loss = criterion(outputs, labels) | ||
|
||
# Backward and optimize | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
if (i+1) % 100 == 0: | ||
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' | ||
.format(epoch+1, num_epochs, i+1, total_step, loss.item())) | ||
|
||
# Test the model | ||
# In test phase, we don't need to compute gradients (for memory efficiency) | ||
with torch.no_grad(): | ||
correct = 0 | ||
total = 0 | ||
for images, labels in test_loader: | ||
images = images.reshape(-1, 28*28).to(device) | ||
labels = labels.to(device) | ||
outputs = model(images) | ||
_, predicted = torch.max(outputs.data, 1) | ||
total += labels.size(0) | ||
correct += (predicted == labels).sum().item() | ||
|
||
print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) | ||
|
||
# Save the model checkpoint | ||
torch.save(model.state_dict(), 'model.ckpt') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import torch | ||
import torch.nn as nn | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
# Hyper-parameters | ||
input_size = 1 | ||
output_size = 1 | ||
num_epochs = 60 | ||
learning_rate = 0.001 | ||
|
||
# Toy dataset | ||
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], | ||
[9.779], [6.182], [7.59], [2.167], [7.042], | ||
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32) | ||
|
||
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], | ||
[3.366], [2.596], [2.53], [1.221], [2.827], | ||
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32) | ||
|
||
# Linear regression model | ||
model = nn.Linear(input_size, output_size) | ||
|
||
# Loss and optimizer | ||
criterion = nn.MSELoss() | ||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) | ||
|
||
# Train the model | ||
for epoch in range(num_epochs): | ||
# Convert numpy arrays to torch tensors | ||
inputs = torch.from_numpy(x_train) | ||
targets = torch.from_numpy(y_train) | ||
|
||
# Forward pass | ||
outputs = model(inputs) | ||
loss = criterion(outputs, targets) | ||
|
||
# Backward and optimize | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
if (epoch+1) % 5 == 0: | ||
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) | ||
|
||
# Plot the graph | ||
predicted = model(torch.from_numpy(x_train)).detach().numpy() | ||
plt.plot(x_train, y_train, 'ro', label='Original data') | ||
plt.plot(x_train, predicted, label='Fitted line') | ||
plt.legend() | ||
plt.show() | ||
|
||
# Save the model checkpoint | ||
torch.save(model.state_dict(), 'model.ckpt') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
|
||
# Hyper-parameters | ||
input_size = 784 | ||
num_classes = 10 | ||
num_epochs = 5 | ||
batch_size = 100 | ||
learning_rate = 0.001 | ||
|
||
# MNIST dataset (images and labels) | ||
train_dataset = torchvision.datasets.MNIST(root='../../data', | ||
train=True, | ||
transform=transforms.ToTensor(), | ||
download=True) | ||
|
||
test_dataset = torchvision.datasets.MNIST(root='../../data', | ||
train=False, | ||
transform=transforms.ToTensor()) | ||
|
||
# Data loader (input pipeline) | ||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | ||
batch_size=batch_size, | ||
shuffle=True) | ||
|
||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | ||
batch_size=batch_size, | ||
shuffle=False) | ||
|
||
# Logistic regression model | ||
model = nn.Linear(input_size, num_classes) | ||
|
||
# Loss and optimizer | ||
# nn.CrossEntropyLoss() computes softmax internally | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) | ||
|
||
# Train the model | ||
total_step = len(train_loader) | ||
for epoch in range(num_epochs): | ||
for i, (images, labels) in enumerate(train_loader): | ||
# Reshape images to (batch_size, input_size) | ||
images = images.reshape(-1, 28*28) | ||
|
||
# Forward pass | ||
outputs = model(images) | ||
loss = criterion(outputs, labels) | ||
|
||
# Backward and optimize | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
if (i+1) % 100 == 0: | ||
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' | ||
.format(epoch+1, num_epochs, i+1, total_step, loss.item())) | ||
|
||
# Test the model | ||
# In test phase, we don't need to compute gradients (for memory efficieny) | ||
with torch.no_grad(): | ||
correct = 0 | ||
total = 0 | ||
for images, labels in test_loader: | ||
images = images.reshape(-1, 28*28) | ||
outputs = model(images) | ||
_, predicted = torch.max(outputs.data, 1) | ||
total += labels.size(0) | ||
correct += (predicted == labels).sum() | ||
|
||
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) | ||
|
||
# Save the model checkpoint | ||
torch.save(model.state_dict(), 'model.ckpt') |
Oops, something went wrong.