SiGGRAPH Asia 2016
Michaël Gharbi gharbi@mit.edu Gaurav Chaurasia Sylvain Paris Frédo Durand
This code uses the following external packages:
- Caffe, tested with the master branch, commit #42cd785
- Numpy
- Scikit-Image (for image I/O)
You can install the python packages via pip:
pip install -r requirements.txt
Use the bin/demosaick
script, for example:
python bin/demosaick --input data/test_images/000001.png --output output --model pretrained_models/bayer_noise --noise 0.02
For results on the Xtrans mosaick:
python bin/demosaick --input data/test_images/000001.png --output output --model pretrained_models/xtrans --mosaic_type xtrans
Run python bin/demosaick -h
for details on the flags you can pass to this script, e.g.
--gpu
will run the GPU version of the model.
When provided with an RGB input, the program will assume it is a ground-truth demosaicked image. It will add noise if requested, mosaick-it, run our algorithm then compute PSNR.
When provided with a grayscale image, the program assumes it is a GRBG Bayer mosaic.
Use the offset-x
and offset-y
flag, if you need to shift the mosaick pattern.
python bin/demosaick --input data/test_raw_images/5d_mark_ii_iso800.tiff --output output --model pretrained_models/bayer --offset_x 1
To convert a RAW file to a grayscale Bayer image suitable as input, you can use DCRaw:
dcraw -T -d -W -6 {filename}
This input can then be fed to bin/demosaick
To produce a comparable output from DCRaw's demosaicking algorithm run:
dcraw -T -o 0 -M -W -6 {filename}
When the ground-truth is available, the program outputs a horizontal stack of images with, in order: ground-truth input, noise-corrupted input, corrupted mosaick, denoised/demosaicked result, max-scaled difference map.
If the ground-truth is not available, the program simply outputs a demosaicked image.
We provide three pre-trained Caffe models in the pretrained_models/
directory. bayer
has been trained with no noise, and bayer_noise
) with
noise variances in the range [0, 20] (out of 255). The noise agnostic model
will not attempt to perform denoising.
You can download the full training dataset here. Alternatively, run the download script provided with this code:
cd data
python download_dataset.py
You will first need to generate a new network description by running
python bin/create_net --output output/new_net
The script is populated with sensible default, but check python bin/create_net -h
for details on the parameters you can alter.
Then, generate lmdb training and validation databases from the downloaded datasets:
python bin/convert_to_lmdb --input data/images/train --output data/db_train
python bin/convert_to_lmdb --input data/images/val --output data/db_val
You can now run the training code:
caffe train --solver output/new_net/solver.prototxt --log_dir output/new_net/log
Here's a full example with the dummy database files provided:
python bin/create_net --output output/dummy_net --train_db data/dummy_train_db --test_db data/dummy_val_db
caffe train --solver output/dummy_net/solver.prototxt --log_dir output/dummy_net/log
Contact Michael Gharbi gharbi@mit.edu
-
The latest version of CAFFE might break compatibility with this code, we tested against Caffe commit #42cd785
-
If you run into python errors, not finding the demosaicnet packages, try:
export PYTHONPATH=$PYTHONPATH:""