Integration of adversarial autoencoders with residual dense convolutional networks for estimation of non-Gaussian conductivities
Shaoxing Mo, Nicholas Zabaras, Xiaoqing Shi, Jichun Wu
- python 3
- PyTorch 0.4
- h5py
- matplotlib
- seaborn
See Mo et al. (2020) for more information. If you find this repo useful for your research, please consider to cite:
@article{doi:10.1029/2019WR026082,
author = {Mo, Shaoxing and Zabaras, Nicholas and Shi, Xiaoqing and Wu, Jichun},
title = {Integration of adversarial autoencoders with residual dense convolutional networks for estimation of
non-Gaussian hydraulic conductivities},
journal = {Water Resources Research},
volume = {n/a},
number = {n/a},
pages = {e2019WR026082},
doi = {10.1029/2019WR026082},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026082}
}
or:
Mo, S., Zabaras, N., Shi, X., & Wu, J. ( 2020). Integration of adversarial autoencoders with residual dense
convolutional networks for estimation of non‐Gaussian hydraulic conductivities. Water Resources Research,
56, e2019WR026082. https://doi.org/10.1029/2019WR026082
Contact Shaoxing Mo (smo@smail.nju.edu.cn) or Nicholas Zabaras (nzabaras@gmail.com) with questions or comments.