Skip to content

Commit

Permalink
Merge pull request #15 from YingqianWang/patch-1
Browse files Browse the repository at this point in the history
Update README.md
  • Loading branch information
zf020114 authored Dec 17, 2021
2 parents 4504145 + 5b4d4c8 commit f77f328
Showing 1 changed file with 11 additions and 11 deletions.
22 changes: 11 additions & 11 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# DARDet
**PyTorch implementation of "*DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images*", [<a href="https://arxiv.org/abs/2110.01025">pdf</a>].**<br><br>
**PyTorch implementation of "*DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images*", [<a href="https://arxiv.org/abs/2110.01025">IEEE GRSL, 2021</a>].**<br><br>


## *Highlights:*
#### 1. *We develop a new dense anchor-free rotated object detection architecture (DARDet), which directly predicts five parameters of OBB at each spatial location.*
<p align="center"> <img src="https://raw.github.com/zf020114/DARDet/master/Figs/framework.PNG" width="100%"></p>

#### 2. *Our DARDet significantly achieve state-of-the-art performance on the DOTA, UCAS-AOD, and HRSC2016 datasets with high efficiency..*
#### 2. *Our DARDet significantly achieves state-of-the-art performance on the DOTA, UCAS-AOD, and HRSC2016 datasets with high efficiency..*
<p align="center"> <img src="https://raw.github.com/zf020114/DARDet/master/Figs/table.png" width="100%"></p>
<p align="center"> <img src="https://raw.github.com/zf020114/DARDet/master/Figs/result.PNG" width="100%"></p>

Expand All @@ -19,7 +19,6 @@
|DARDet | R-50-FPN | - || 2x | 12.7 | 78.74 | [cfg](configs/DARDet/dardet_r50_fpn_1x_dcn_rotate_test.py)[model](https://pan.baidu.com/s/1VPsAB3Kb90IqJTluH6lFHw) |


## Installation
## Prerequisites

- Linux or macOS (Windows is in experimental support)
Expand Down Expand Up @@ -116,13 +115,13 @@ If mmcv and mmcv-full are both installed, there will be `ModuleNotFoundError`.
python setup.py build_ext --inplace
```

## Prepare DOTA dataset.
## Prepare the DOTA dataset.

It is recommended to symlink the dataset root to `DARDet/data`.

Here, we give an example for single scale data preparation of DOTA-v1.5.

First, make sure your initial data are in the following structure.
First, make sure your initial data is in the following structure.
```
data/dota15
├── train
Expand All @@ -149,7 +148,7 @@ If mmcv and mmcv-full are both installed, there will be `ModuleNotFoundError`.
    └── images
```
For data preparation with data augmentation, refer to "DOTA_devkit/prepare_dota1_5_v2.py"
You can ues ./tools/show_dataloder.py to visual the data using in networks.
You can use ./tools/show_dataloder.py to visualize the data using in networks.

Examples:

Expand All @@ -164,10 +163,10 @@ python tools/test.py configs/DARDet/dardet_r50_fpn_1x_dcn_val.py \
```
*If you want to evaluate the result on DOTA test-dev, zip the files in ```work_dirs/dardet_r50_fpn_1x_dcn_val/result_after_nms``` and submit it to the [evaluation server](https://captain-whu.github.io/DOTA/index.html).

You can set "--show-dir" to a given path for visualing the test results.
You can set "--show-dir" to a given path for visualizng the test results.

## Inference
To inference multiple images in a folder, you can run:
To perform inference on multiple images in a folder, you can run:

```
python demo/demo_inference.py ${CONFIG_FILE} ${CHECKPOINT} ${IMG_DIR} ${OUTPUT_DIR}
Expand Down Expand Up @@ -232,11 +231,12 @@ Usually it is slow if you do not have high speed networking like infiniband.
## Citation

```
@article{zhang2021dardet,
@article{dardet,
title={DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images},
author={Zhang, Feng and Wang, Xueying and Zhou, Shilin and Wang, Yingqian},
journal={arXiv preprint arXiv:2110.01025},
year={2021}
journal={IEEE Geoscience and Remote Sensing Letters},
year={2021},
publisher={IEEE}
}
```

Expand Down

0 comments on commit f77f328

Please sign in to comment.