forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* updata_yxt * update_yxt * add_yxt * update_yxt * update_yxt * update_yxt
- Loading branch information
Showing
23 changed files
with
2,446 additions
and
73 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,28 @@ | ||
../../../anakin/examples/example_introduction_cn.md | ||
# Example | ||
Anakin目前只支持NCHW的格式 | ||
示例文件在test/framework/net下 | ||
|
||
## 在NV的GPU上运行CNN模型 | ||
示例文件为打开example_nv_cnn_net.cpp,整体流程如下: | ||
- 将模型的的path设置为anakin模型的路径,初始化NV平台的图对象。 anakin模型可以通过转换器转化caffe或fluid的模型得到 | ||
- 根据模型设置网络图的输入尺寸,进行图优化 | ||
- 根据优化后的网络图初始化网络执行器 | ||
- 取出网络的输入tensor,将数据拷贝到输入tensor | ||
- 运行推导 | ||
- 取出网络的输出tensor | ||
|
||
以NV平台为例演示Anakin框架的使用方法,注意编译时需要打开GPU编译开关 | ||
|
||
## 在X86上运行RNN模型 | ||
示例文件为example_x86_rnn_net.cpp | ||
整体流程与在NV的GPU上运行CNN模型相似,不同之处如下: | ||
- 使用X86标识初始化图对象和网络执行器对象 | ||
- rnn模型的输入尺寸是可变的,初始化图时的输入维度是维度的最大值,输入维度N代表总的词的个数。还需要设置输入tensor的seq_offset来标示这些词是如何划分为句子的,如{0,5,12}表示共有12个词,其中第0到第4个词是第一句话,第5到第11个词是第二句话 | ||
|
||
以X86平台为例演示Anakin框架的使用方法,注意编译时需要打开X86编译开关 | ||
|
||
## 在NV的GPU上使用Anakin的线程池运行CNN模型 | ||
示例文件为example_nv_cnn_net_multi_thread.cpp ,示例使用worker的同步预测接口 | ||
整体流程与在NV的GPU上运行CNN模型相似,不同之处如下: | ||
- 用模型地址和线程池大小初始化worker对象 | ||
- 将输入tensor注入任务队列,获得输出tensor |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.