Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ability for global variables to be initialized with address of each other #131

Closed
andrewrk opened this issue Mar 1, 2016 · 1 comment
Closed
Labels
bug Observed behavior contradicts documented or intended behavior enhancement Solving this issue will likely involve adding new logic or components to the codebase. frontend Tokenization, parsing, AstGen, Sema, and Liveness.
Milestone

Comments

@andrewrk
Copy link
Member

andrewrk commented Mar 1, 2016

const std = @import("std");
const expect = std.testing.expect;

const Node = struct {
    next: *Node,
};

const a: Node = .{ .next = &b };
const b: Node = .{ .next = &a };

test "example" {
    expect(a.next == &b);
    expect(b.next == &a);
}

Currently, this test case produces the following results:

test.zig:8:1: error: dependency loop detected
const a: Node = .{ .next = &b };
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
referenced by:
    a: test.zig:8:29
    b: test.zig:9:29
    remaining reference traces hidden; use '-freference-trace' to see all reference traces
@andrewrk andrewrk added the enhancement Solving this issue will likely involve adding new logic or components to the codebase. label Mar 1, 2016
@andrewrk andrewrk modified the milestone: 0.1.0 May 7, 2016
@andrewrk andrewrk modified the milestones: 0.1.0, 0.2.0 Apr 20, 2017
@andrewrk andrewrk modified the milestones: 0.2.0, 0.3.0 Oct 20, 2017
@andrewrk andrewrk modified the milestones: 0.3.0, 0.4.0 Feb 28, 2018
@andrewrk andrewrk modified the milestones: 0.4.0, 0.5.0 Feb 2, 2019
@andrewrk andrewrk modified the milestones: 0.5.0, 0.6.0 Aug 27, 2019
@andrewrk andrewrk modified the milestones: 0.6.0, 0.7.0 Dec 9, 2019
@andrewrk andrewrk modified the milestones: 0.7.0, 0.8.0 Oct 9, 2020
@andrewrk andrewrk added the frontend Tokenization, parsing, AstGen, Sema, and Liveness. label Oct 9, 2020
ifreund added a commit to ifreund/zig-wayland that referenced this issue Oct 11, 2020
This is a workaround for a limitation of the stage1 zig compiler
See: ziglang/zig#131
@andrewrk andrewrk modified the milestones: 0.8.0, 0.9.0 Jun 4, 2021
@andrewrk andrewrk modified the milestones: 0.9.0, 0.10.0 Nov 21, 2021
@andrewrk andrewrk modified the milestones: 0.10.0, 0.11.0 Apr 17, 2022
@andrewrk andrewrk modified the milestones: 0.13.0, 0.12.0 Jul 20, 2023
mlugg added a commit to mlugg/zig that referenced this issue Jan 23, 2024
This commit changes how declarations (`const`, `fn`, `usingnamespace`,
etc) are represented in ZIR. Previously, these were represented in the
container type's extra data (e.g. as trailing data on a `struct_decl`).
However, this introduced the complexity of the ZIR mapping logic having
to also correlate some ZIR extra data indices. That isn't really a
problem today, but it's tricky for the introduction of `TrackedInst` in
the commit following this one. Instead, these type declarations now
simply contain a trailing list of ZIR indices to `declaration`
instructions, which directly encode all data related to the declaration
(including containing the declaration's body). Additionally, the ZIR for
`align` etc have been split out into their own bodies. This is not
strictly necessary, but it's much simpler to understand for an
insignificant cost in bytes, and will simplify the resolution of ziglang#131
(where we may need to evaluate the pointer type, including align etc,
without immediately evaluating the value body).
mlugg added a commit to mlugg/zig that referenced this issue Jan 23, 2024
This commit changes how declarations (`const`, `fn`, `usingnamespace`,
etc) are represented in ZIR. Previously, these were represented in the
container type's extra data (e.g. as trailing data on a `struct_decl`).
However, this introduced the complexity of the ZIR mapping logic having
to also correlate some ZIR extra data indices. That isn't really a
problem today, but it's tricky for the introduction of `TrackedInst` in
the commit following this one. Instead, these type declarations now
simply contain a trailing list of ZIR indices to `declaration`
instructions, which directly encode all data related to the declaration
(including containing the declaration's body). Additionally, the ZIR for
`align` etc have been split out into their own bodies. This is not
strictly necessary, but it's much simpler to understand for an
insignificant cost in bytes, and will simplify the resolution of ziglang#131
(where we may need to evaluate the pointer type, including align etc,
without immediately evaluating the value body).
mlugg added a commit to mlugg/zig that referenced this issue Jan 23, 2024
This commit changes how declarations (`const`, `fn`, `usingnamespace`,
etc) are represented in ZIR. Previously, these were represented in the
container type's extra data (e.g. as trailing data on a `struct_decl`).
However, this introduced the complexity of the ZIR mapping logic having
to also correlate some ZIR extra data indices. That isn't really a
problem today, but it's tricky for the introduction of `TrackedInst` in
the commit following this one. Instead, these type declarations now
simply contain a trailing list of ZIR indices to `declaration`
instructions, which directly encode all data related to the declaration
(including containing the declaration's body). Additionally, the ZIR for
`align` etc have been split out into their own bodies. This is not
strictly necessary, but it's much simpler to understand for an
insignificant cost in bytes, and will simplify the resolution of ziglang#131
(where we may need to evaluate the pointer type, including align etc,
without immediately evaluating the value body).
mlugg added a commit to mlugg/zig that referenced this issue Jan 23, 2024
This commit changes how declarations (`const`, `fn`, `usingnamespace`,
etc) are represented in ZIR. Previously, these were represented in the
container type's extra data (e.g. as trailing data on a `struct_decl`).
However, this introduced the complexity of the ZIR mapping logic having
to also correlate some ZIR extra data indices. That isn't really a
problem today, but it's tricky for the introduction of `TrackedInst` in
the commit following this one. Instead, these type declarations now
simply contain a trailing list of ZIR indices to `declaration`
instructions, which directly encode all data related to the declaration
(including containing the declaration's body). Additionally, the ZIR for
`align` etc have been split out into their own bodies. This is not
strictly necessary, but it's much simpler to understand for an
insignificant cost in bytes, and will simplify the resolution of ziglang#131
(where we may need to evaluate the pointer type, including align etc,
without immediately evaluating the value body).
mlugg added a commit to mlugg/zig that referenced this issue Jan 23, 2024
This commit changes how declarations (`const`, `fn`, `usingnamespace`,
etc) are represented in ZIR. Previously, these were represented in the
container type's extra data (e.g. as trailing data on a `struct_decl`).
However, this introduced the complexity of the ZIR mapping logic having
to also correlate some ZIR extra data indices. That isn't really a
problem today, but it's tricky for the introduction of `TrackedInst` in
the commit following this one. Instead, these type declarations now
simply contain a trailing list of ZIR indices to `declaration`
instructions, which directly encode all data related to the declaration
(including containing the declaration's body). Additionally, the ZIR for
`align` etc have been split out into their own bodies. This is not
strictly necessary, but it's much simpler to understand for an
insignificant cost in bytes, and will simplify the resolution of ziglang#131
(where we may need to evaluate the pointer type, including align etc,
without immediately evaluating the value body).
bilaliscarioth pushed a commit to bilaliscarioth/zig that referenced this issue Jan 27, 2024
This commit changes how declarations (`const`, `fn`, `usingnamespace`,
etc) are represented in ZIR. Previously, these were represented in the
container type's extra data (e.g. as trailing data on a `struct_decl`).
However, this introduced the complexity of the ZIR mapping logic having
to also correlate some ZIR extra data indices. That isn't really a
problem today, but it's tricky for the introduction of `TrackedInst` in
the commit following this one. Instead, these type declarations now
simply contain a trailing list of ZIR indices to `declaration`
instructions, which directly encode all data related to the declaration
(including containing the declaration's body). Additionally, the ZIR for
`align` etc have been split out into their own bodies. This is not
strictly necessary, but it's much simpler to understand for an
insignificant cost in bytes, and will simplify the resolution of ziglang#131
(where we may need to evaluate the pointer type, including align etc,
without immediately evaluating the value body).
mlugg added a commit to mlugg/zig that referenced this issue Aug 6, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When ziglang#131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no user-facing changes. Instead, it
is an internal refactor which makes it easier to correctly model the
responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.
kubkon pushed a commit that referenced this issue Aug 9, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When #131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no user-facing changes. Instead, it
is an internal refactor which makes it easier to correctly model the
responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.
jacobly0 pushed a commit to mlugg/zig that referenced this issue Aug 11, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When ziglang#131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no user-facing changes. Instead, it
is an internal refactor which makes it easier to correctly model the
responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.
mlugg added a commit to mlugg/zig that referenced this issue Aug 11, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When ziglang#131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
SammyJames pushed a commit to SammyJames/zig that referenced this issue Aug 13, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When ziglang#131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
Rexicon226 pushed a commit to Rexicon226/zig that referenced this issue Aug 13, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When ziglang#131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
richerfu pushed a commit to richerfu/zig that referenced this issue Oct 28, 2024
The type `Zcu.Decl` in the compiler is problematic: over time it has
gained many responsibilities. Every source declaration, container type,
generic instantiation, and `@extern` has a `Decl`. The functions of
these `Decl`s are in some cases entirely disjoint.

After careful analysis, I determined that the two main responsibilities
of `Decl` are as follows:
* A `Decl` acts as the "subject" of semantic analysis at comptime. A
  single unit of analysis is either a runtime function body, or a
  `Decl`. It registers incremental dependencies, tracks analysis errors,
  etc.
* A `Decl` acts as a "global variable": a pointer to it is consistent,
  and it may be lowered to a specific symbol by the codegen backend.

This commit eliminates `Decl` and introduces new types to model these
responsibilities: `Cau` (Comptime Analysis Unit) and `Nav` (Named
Addressable Value).

Every source declaration, and every container type requiring resolution
(so *not* including `opaque`), has a `Cau`. For a source declaration,
this `Cau` performs the resolution of its value. (When ziglang#131 is
implemented, it is unsolved whether type and value resolution will share
a `Cau` or have two distinct `Cau`s.) For a type, this `Cau` is the
context in which type resolution occurs.

Every non-`comptime` source declaration, every generic instantiation,
and every distinct `extern` has a `Nav`. These are sent to codegen/link:
the backends by definition do not care about `Cau`s.

This commit has some minor technically-breaking changes surrounding
`usingnamespace`. I don't think they'll impact anyone, since the changes
are fixes around semantics which were previously inconsistent (the
behavior changed depending on hashmap iteration order!).

Aside from that, this changeset has no significant user-facing changes.
Instead, it is an internal refactor which makes it easier to correctly
model the responsibilities of different objects, particularly regarding
incremental compilation. The performance impact should be negligible,
but I will take measurements before merging this work into `master`.

Co-authored-by: Jacob Young <jacobly0@users.noreply.github.com>
Co-authored-by: Jakub Konka <kubkon@jakubkonka.com>
mlugg added a commit to mlugg/zig that referenced this issue Dec 23, 2024
The new representation is often more compact. It is also more
straightforward to understand: for instance, `extern` is represented on
the `declaration` instruction itself rather than using a special
instruction. The same applies to `var`, making both of these far more
compact.

This commit also separates the type and value bodies of a `declaration`
instruction. This is a prerequisite for ziglang#131.

In general, `declaration` now directly encodes details of the syntax
form used, and the embedded ZIR bodies are for actual expressions. The
only exception to this is functions, where ZIR is effectively designed
as if we had ziglang#1717. `extern fn` declarations are modeled as
`extern const` with a function type, and normal `fn` definitions are
modeled as `const` with a `func{,_fancy,_inferred}` instruction. This
may change in the future, but improving on this was out of scope for
this commit.
mlugg added a commit to mlugg/zig that referenced this issue Dec 23, 2024
The `Cau` abstraction originated from noting that one of the two primary
roles of the legacy `Decl` type was to be the subject of comptime
semantic analysis. However, the data stored in `Cau` has always had some
level of redundancy. While preparing for ziglang#131, I went to remove that
redundany, and realised that `Cau` now had exactly one field: `owner`.

This led me to conclude that `Cau` is, in fact, an unnecessary level of
abstraction over what are in reality *fundamentally different* kinds of
analysis unit (`AnalUnit`). Types, `Nav` vals, and `comptime`
declarations are all analyzed in different ways, and trying to treat
them as the same thing is counterproductive!

So, these 3 cases are now different alternatives in `AnalUnit`. To avoid
stealing bits from `InternPool`-based IDs, which are already a little
starved for bits due to the sharding datastructures, `AnalUnit` is
expanded to 64 bits (30 of which are currently unused). This doesn't
impact memory usage too much by default, because we don't store
`AnalUnit`s all too often; however, we do store them a lot under
`-fincremental`, so a non-trivial bump to peak RSS can be observed
there. This will be improved in the future when I made
`InternPool.DepEntry` less memory-inefficient.

`Zcu.PerThread.ensureCauAnalyzed` is split into 3 functions, for each of
the 3 new types of `AnalUnit`. The new logic is much easier to
understand, because it avoids conflating the logic of these
fundamentally different cases.
mlugg added a commit to mlugg/zig that referenced this issue Dec 23, 2024
This commit separates semantic analysis of the annotated type vs value
of a global declaration, therefore allowing recursive and mutually
recursive values to be declared.

Every `Nav` which undergoes analysis now has *two* corresponding
`AnalUnit`s: `.{ .nav_val = n }` and `.{ .nav_ty = n }`. The `nav_val`
unit is responsible for *fully resolving* the `Nav`: determining its
value, linksection, addrspace, etc. The `nav_ty` unit, on the other
hand, resolves only the information necessary to construct a *pointer*
to the `Nav`: its type, addrspace, etc. (It does also analyze its
linksection, but that could be moved to `nav_val` I think; it doesn't
make any difference).

Analyzing a `nav_ty` for a declaration with no type annotation will just
mark a dependency on the `nav_val`, analyze it, and finish. Conversely,
analyzing a `nav_val` for a declaration *with* a type annotation will
first mark a dependency on the `nav_ty` and analyze it, using this as
the result type when evaluating the value body.

The `nav_val` and `nav_ty` units always have references to one another:
so, if a `Nav`'s type is referenced, its value implicitly is too, and
vice versa. However, these dependencies are trivial, so, to save memory,
are only known implicitly by logic in `resolveReferences`.

In general, analyzing ZIR `decl_val` will only analyze `nav_ty` of the
corresponding `Nav`. There are two exceptions to this. If the
declaration is an `extern` declaration, then we immediately ensure the
`Nav` value is resolved (which doesn't actually require any more
analysis, since such a declaration has no value body anyway).
Additionally, if the resolved type has type tag `.@"fn"`, we again
immediately resolve the `Nav` value. The latter restriction is in place
for two reasons:

* Functions are special, in that their externs are allowed to trivially
  alias; i.e. with a declaration `extern fn foo(...)`, you can write
  `const bar = foo;`. This is not allowed for non-function externs, and
  it means that function types are the only place where it is possible
  for a declaration `Nav` to have a `.@"extern"` value without actually
  being declared `extern`. We need to identify this situation
  immediately so that the `decl_ref` can create a pointer to the *real*
  extern `Nav`, not this alias.
* In certain situations, such as taking a pointer to a `Nav`, Sema needs
  to queue analysis of a runtime function if the value is a function. To
  do this, the function value needs to be known, so we need to resolve
  the value immediately upon `&foo` where `foo` is a function.

This restriction is simple to codify into the eventual language
specification, and doesn't limit the utility of this feature in
practice.

A consequence of this commit is that codegen and linking logic needs to
be more careful when looking at `Nav`s. In general:

* When `updateNav` or `updateFunc` is called, it is safe to assume that
  the `Nav` being updated (the owner `Nav` for `updateFunc`) is fully
  resolved.
* Any `Nav` whose value is/will be an `@"extern"` or a function is fully
  resolved; see `Nav.getExtern` for a helper for a common case here.
* Any other `Nav` may only have its type resolved.

This didn't seem to be too tricky to satisfy in any of the existing
codegen/linker backends.

Resolves: ziglang#131
mlugg added a commit to mlugg/zig that referenced this issue Dec 24, 2024
This commit separates semantic analysis of the annotated type vs value
of a global declaration, therefore allowing recursive and mutually
recursive values to be declared.

Every `Nav` which undergoes analysis now has *two* corresponding
`AnalUnit`s: `.{ .nav_val = n }` and `.{ .nav_ty = n }`. The `nav_val`
unit is responsible for *fully resolving* the `Nav`: determining its
value, linksection, addrspace, etc. The `nav_ty` unit, on the other
hand, resolves only the information necessary to construct a *pointer*
to the `Nav`: its type, addrspace, etc. (It does also analyze its
linksection, but that could be moved to `nav_val` I think; it doesn't
make any difference).

Analyzing a `nav_ty` for a declaration with no type annotation will just
mark a dependency on the `nav_val`, analyze it, and finish. Conversely,
analyzing a `nav_val` for a declaration *with* a type annotation will
first mark a dependency on the `nav_ty` and analyze it, using this as
the result type when evaluating the value body.

The `nav_val` and `nav_ty` units always have references to one another:
so, if a `Nav`'s type is referenced, its value implicitly is too, and
vice versa. However, these dependencies are trivial, so, to save memory,
are only known implicitly by logic in `resolveReferences`.

In general, analyzing ZIR `decl_val` will only analyze `nav_ty` of the
corresponding `Nav`. There are two exceptions to this. If the
declaration is an `extern` declaration, then we immediately ensure the
`Nav` value is resolved (which doesn't actually require any more
analysis, since such a declaration has no value body anyway).
Additionally, if the resolved type has type tag `.@"fn"`, we again
immediately resolve the `Nav` value. The latter restriction is in place
for two reasons:

* Functions are special, in that their externs are allowed to trivially
  alias; i.e. with a declaration `extern fn foo(...)`, you can write
  `const bar = foo;`. This is not allowed for non-function externs, and
  it means that function types are the only place where it is possible
  for a declaration `Nav` to have a `.@"extern"` value without actually
  being declared `extern`. We need to identify this situation
  immediately so that the `decl_ref` can create a pointer to the *real*
  extern `Nav`, not this alias.
* In certain situations, such as taking a pointer to a `Nav`, Sema needs
  to queue analysis of a runtime function if the value is a function. To
  do this, the function value needs to be known, so we need to resolve
  the value immediately upon `&foo` where `foo` is a function.

This restriction is simple to codify into the eventual language
specification, and doesn't limit the utility of this feature in
practice.

A consequence of this commit is that codegen and linking logic needs to
be more careful when looking at `Nav`s. In general:

* When `updateNav` or `updateFunc` is called, it is safe to assume that
  the `Nav` being updated (the owner `Nav` for `updateFunc`) is fully
  resolved.
* Any `Nav` whose value is/will be an `@"extern"` or a function is fully
  resolved; see `Nav.getExtern` for a helper for a common case here.
* Any other `Nav` may only have its type resolved.

This didn't seem to be too tricky to satisfy in any of the existing
codegen/linker backends.

Resolves: ziglang#131
mlugg added a commit to mlugg/zig that referenced this issue Dec 24, 2024
The `Cau` abstraction originated from noting that one of the two primary
roles of the legacy `Decl` type was to be the subject of comptime
semantic analysis. However, the data stored in `Cau` has always had some
level of redundancy. While preparing for ziglang#131, I went to remove that
redundany, and realised that `Cau` now had exactly one field: `owner`.

This led me to conclude that `Cau` is, in fact, an unnecessary level of
abstraction over what are in reality *fundamentally different* kinds of
analysis unit (`AnalUnit`). Types, `Nav` vals, and `comptime`
declarations are all analyzed in different ways, and trying to treat
them as the same thing is counterproductive!

So, these 3 cases are now different alternatives in `AnalUnit`. To avoid
stealing bits from `InternPool`-based IDs, which are already a little
starved for bits due to the sharding datastructures, `AnalUnit` is
expanded to 64 bits (30 of which are currently unused). This doesn't
impact memory usage too much by default, because we don't store
`AnalUnit`s all too often; however, we do store them a lot under
`-fincremental`, so a non-trivial bump to peak RSS can be observed
there. This will be improved in the future when I made
`InternPool.DepEntry` less memory-inefficient.

`Zcu.PerThread.ensureCauAnalyzed` is split into 3 functions, for each of
the 3 new types of `AnalUnit`. The new logic is much easier to
understand, because it avoids conflating the logic of these
fundamentally different cases.
@mlugg mlugg closed this as completed in 3afda43 Dec 25, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Observed behavior contradicts documented or intended behavior enhancement Solving this issue will likely involve adding new logic or components to the codebase. frontend Tokenization, parsing, AstGen, Sema, and Liveness.
Projects
None yet
Development

No branches or pull requests

1 participant