Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

std.math.log_int: implement integer logarithm without using float math #17143

Merged
merged 5 commits into from
Sep 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions lib/std/math.zig
Original file line number Diff line number Diff line change
Expand Up @@ -241,6 +241,7 @@ pub const log = @import("math/log.zig").log;
pub const log2 = @import("math/log2.zig").log2;
pub const log10 = @import("math/log10.zig").log10;
pub const log10_int = @import("math/log10.zig").log10_int;
pub const log_int = @import("math/log_int.zig").log_int;
pub const log1p = @import("math/log1p.zig").log1p;
pub const asinh = @import("math/asinh.zig").asinh;
pub const acosh = @import("math/acosh.zig").acosh;
Expand Down Expand Up @@ -362,6 +363,7 @@ test {
_ = log2;
_ = log10;
_ = log10_int;
_ = log_int;
_ = log1p;
_ = asinh;
_ = acosh;
Expand Down
7 changes: 5 additions & 2 deletions lib/std/math/log.zig
Original file line number Diff line number Diff line change
Expand Up @@ -23,14 +23,17 @@ pub fn log(comptime T: type, base: T, x: T) T {
.ComptimeFloat => {
return @as(comptime_float, @log(@as(f64, x)) / @log(float_base));
},

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add, that we should special case comptime-known divisions of power of two with shifts and/or make an issue.

// TODO: implement integer log without using float math.
// The present implementation is incorrect, for example
// `log(comptime_int, 9, 59049)` should return `5` and not `4`.
.ComptimeInt => {
return @as(comptime_int, @floor(@log(@as(f64, x)) / @log(float_base)));
},

// TODO implement integer log without using float math
.Int => |IntType| switch (IntType.signedness) {
.signed => @compileError("log not implemented for signed integers"),
.unsigned => return @as(T, @intFromFloat(@floor(@log(@as(f64, @floatFromInt(x))) / @log(float_base)))),
.unsigned => return @as(T, math.log_int(T, base, x)),
},

.Float => {
Expand Down
114 changes: 114 additions & 0 deletions lib/std/math/log_int.zig
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
const std = @import("../std.zig");
const math = std.math;
const testing = std.testing;
const assert = std.debug.assert;
const Log2Int = math.Log2Int;

/// Returns the logarithm of `x` for the provided `base`, rounding down to the nearest integer.
/// Asserts that `base > 1` and `x > 0`.
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) {
if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned)
@compileError("log_int requires an unsigned integer, found " ++ @typeName(T));

assert(base > 1 and x > 0);

// Let's denote by [y] the integer part of y.

// Throughout the iteration the following invariant is preserved:
// power = base ^ exponent

// Safety and termination.
//
// We never overflow inside the loop because when we enter the loop we have
// power <= [maxInt(T) / base]
// therefore
// power * base <= maxInt(T)
// is a valid multiplication for type `T` and
// exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T))
// is a valid addition for type `Log2Int(T)`.
//
// This implies also termination because power is strictly increasing,
// hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop.

var exponent: Log2Int(T) = 0;
var power: T = 1;
while (power <= x / base) {
power *= base;
exponent += 1;
}

// If we never entered the loop we must have
// [x / base] < 1
// hence
// x <= [x / base] * base < base
// thus the result is 0. We can then return exponent, which is still 0.
//
// Otherwise, if we entered the loop at least once,
// when we exit the loop we have that power is exactly divisible by base and
// power / base <= [x / base] < power
// hence
// power <= [x / base] * base <= x < power * base
// This means that
// base^exponent <= x < base^(exponent+1)
// hence the result is exponent.

return exponent;
}

test "math.log_int" {
// Test all unsigned integers with 2, 3, ..., 64 bits.
// We cannot test 0 or 1 bits since base must be > 1.
inline for (2..64 + 1) |bits| {
const T = @Type(std.builtin.Type{
.Int = std.builtin.Type.Int{ .signedness = .unsigned, .bits = @intCast(bits) },
});

// for base = 2, 3, ..., min(maxInt(T),1024)
var base: T = 1;
while (base < math.maxInt(T) and base <= 1024) {
base += 1;

// test that `log_int(T, base, 1) == 0`
try testing.expectEqual(@as(Log2Int(T), 0), log_int(T, base, 1));

// For powers `pow = base^exp > 1` that fit inside T,
// test that `log_int` correctly detects the jump in the logarithm
// from `log(pow-1) == exp-1` to `log(pow) == exp`.
var exp: Log2Int(T) = 0;
var pow: T = 1;
while (pow <= math.maxInt(T) / base) {
exp += 1;
pow *= base;

try testing.expectEqual(exp - 1, log_int(T, base, pow - 1));
try testing.expectEqual(exp, log_int(T, base, pow));
}
}
}
}

test "math.log_int vs math.log2" {
const types = [_]type{ u2, u3, u4, u8, u16 };
inline for (types) |T| {
var n: T = 0;
while (n < math.maxInt(T)) {
n += 1;
const special = math.log2_int(T, n);
const general = log_int(T, 2, n);
try testing.expectEqual(special, general);
}
}
}

test "math.log_int vs math.log10" {
const types = [_]type{ u4, u5, u6, u8, u16 };
inline for (types) |T| {
var n: T = 0;
while (n < math.maxInt(T)) {
n += 1;
const special = math.log10_int(n);
const general = log_int(T, 10, n);
try testing.expectEqual(special, general);
}
}
}