Skip to content

Commit

Permalink
[formrecognizer] Add prebuilt-document samples and tests (Azure#20894)
Browse files Browse the repository at this point in the history
* add prebuilt-document samples

* fix from_generated methods

* add prebuilt-document tests

* update samples

* fix spelling error
  • Loading branch information
catalinaperalta authored Sep 28, 2021
1 parent 831d3c6 commit be52288
Show file tree
Hide file tree
Showing 18 changed files with 34,073 additions and 16 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2598,8 +2598,12 @@ def __init__(self, **kwargs):
@classmethod
def _from_generated(cls, key_value_pair):
return cls(
key=DocumentKeyValueElement._from_generated(key_value_pair.key),
value=DocumentKeyValueElement._from_generated(key_value_pair.value),
key=DocumentKeyValueElement._from_generated(key_value_pair.key)
if key_value_pair.key
else None,
value=DocumentKeyValueElement._from_generated(key_value_pair.value)
if key_value_pair.value
else None,
confidence=key_value_pair.confidence,
)

Expand Down Expand Up @@ -2875,7 +2879,9 @@ def _from_generated(cls, mark):
return cls(
state=mark.state,
bounding_box=get_bounding_box(mark),
span=DocumentSpan._from_generated(mark.span),
span=DocumentSpan._from_generated(mark.span)
if mark.span
else None,
confidence=mark.confidence,
)

Expand Down Expand Up @@ -3433,7 +3439,9 @@ def _from_generated(cls, word):
return cls(
content=word.content,
bounding_box=get_bounding_box(word),
span=DocumentSpan._from_generated(word.span),
span=DocumentSpan._from_generated(word.span)
if word.span
else None,
confidence=word.confidence,
)

Expand Down Expand Up @@ -3525,7 +3533,9 @@ def _from_generated(cls, response):
api_version=response.api_version,
model_id=response.model_id,
content=response.content,
pages=[DocumentPage._from_generated(page) for page in response.pages],
pages=[DocumentPage._from_generated(page) for page in response.pages]
if response.pages
else [],
tables=[DocumentTable._from_generated(table) for table in response.tables]
if response.tables
else [],
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_document_async.py
DESCRIPTION:
This sample demonstrates how to extract general document information from a document
given through a file.
Note that selection marks returned from begin_analyze_document() do not return the text associated with
the checkbox. For the API to return this information, build a custom model to analyze the checkbox and its text.
See sample_build_model_async.py for more information.
USAGE:
python sample_analyze_document_async.py
Set the environment variables with your own values before running the sample:
1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Cognitive Services resource.
2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key
"""

import os
import asyncio

def format_bounding_region(bounding_regions):
if not bounding_regions:
return "N/A"
return ", ".join("Page #{}: {}".format(region.page_number, format_bounding_box(region.bounding_box)) for region in bounding_regions)

def format_bounding_box(bounding_box):
if not bounding_box:
return "N/A"
return ", ".join(["[{}, {}]".format(p.x, p.y) for p in bounding_box])


async def analyze_document():
path_to_sample_documents = os.path.abspath(
os.path.join(
os.path.abspath(__file__),
"..",
"..",
"..",
"./sample_forms/forms/form_selection_mark.png",
)
)
# [START analyze_document]
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer.aio import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_analysis_client = DocumentAnalysisClient(
endpoint=endpoint, credential=AzureKeyCredential(key)
)

async with document_analysis_client:
with open(path_to_sample_documents, "rb") as f:
poller = await document_analysis_client.begin_analyze_document(
"prebuilt-document", document=f
)
result = await poller.result()

for idx, style in enumerate(result.styles):
print(
"Document contains {} content".format(
"handwritten" if style.is_handwritten else "no handwritten"
)
)

for idx, page in enumerate(result.pages):
print("----Analyzing document from page #{}----".format(idx + 1))
print(
"Page has width: {} and height: {}, measured with unit: {}".format(
page.width, page.height, page.unit
)
)

for line_idx, line in enumerate(page.lines):
print(
"Line # {} has text content '{}' within bounding box '{}'".format(
line_idx,
line.content,
format_bounding_box(line.bounding_box),
)
)

for word in page.words:
print(
"...Word '{}' has a confidence of {}".format(
word.content, word.confidence
)
)

for selection_mark in page.selection_marks:
print(
"Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
selection_mark.state,
format_bounding_box(selection_mark.bounding_box),
selection_mark.confidence,
)
)

for table_idx, table in enumerate(result.tables):
print(
"Table # {} has {} rows and {} columns".format(
table_idx, table.row_count, table.column_count
)
)
for region in table.bounding_regions:
print(
"Table # {} location on page: {} is {}".format(
table_idx,
region.page_number,
format_bounding_box(region.bounding_box),
)
)
for cell in table.cells:
print(
"...Cell[{}][{}] has text '{}'".format(
cell.row_index,
cell.column_index,
cell.content,
)
)
for region in cell.bounding_regions:
print(
"...content on page {} is within bounding box '{}'".format(
region.page_number,
format_bounding_box(region.bounding_box),
)
)

print("----Entities found in document----")
for idx, entity in enumerate(result.entities):
print("Entity of category '{}' with sub-category '{}'".format(entity.category, entity.sub_category))
print("...has content '{}'".format(entity.content))
print("...within '{}' bounding regions".format(format_bounding_region(entity.bounding_regions)))
print("...with confidence {}".format(entity.confidence))

print("----Key-value pairs found in document----")
for idx, kv_pair in enumerate(result.key_value_pairs):
if kv_pair.key:
print(
"Key '{}' found within '{}' bounding regions".format(
kv_pair.key.content,
format_bounding_region(kv_pair.key.bounding_regions),
)
)
if kv_pair.value:
print(
"Value '{}' found within '{}' bounding regions".format(
kv_pair.value.content,
format_bounding_region(kv_pair.value.bounding_regions),
)
)
print("----------------------------------------")

# [END analyze_document]


async def main():
await analyze_document()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ async def analyze_layout_async():
for idx, style in enumerate(result.styles):
print(
"Document contains {} content".format(
"handwritten" if style.is_handwritte else "no handwritten"
"handwritten" if style.is_handwritten else "no handwritten"
)
)

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
# coding: utf-8

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------

"""
FILE: sample_analyze_document.py
DESCRIPTION:
This sample demonstrates how to extract general document information from a document
given through a file.
Note that selection marks returned from begin_analyze_document() do not return the text associated with
the checkbox. For the API to return this information, build a custom model to analyze the checkbox and its text.
See sample_build_model.py for more information.
USAGE:
python sample_analyze_document.py
Set the environment variables with your own values before running the sample:
1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Cognitive Services resource.
2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key
"""

import os

def format_bounding_region(bounding_regions):
if not bounding_regions:
return "N/A"
return ", ".join("Page #{}: {}".format(region.page_number, format_bounding_box(region.bounding_box)) for region in bounding_regions)

def format_bounding_box(bounding_box):
if not bounding_box:
return "N/A"
return ", ".join(["[{}, {}]".format(p.x, p.y) for p in bounding_box])


def analyze_document():
path_to_sample_documents = os.path.abspath(
os.path.join(
os.path.abspath(__file__),
"..",
"..",
"./sample_forms/forms/form_selection_mark.png",
)
)
# [START analyze_document]
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient

endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"]
key = os.environ["AZURE_FORM_RECOGNIZER_KEY"]

document_analysis_client = DocumentAnalysisClient(
endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(path_to_sample_documents, "rb") as f:
poller = document_analysis_client.begin_analyze_document(
"prebuilt-document", document=f
)
result = poller.result()

for idx, style in enumerate(result.styles):
print(
"Document contains {} content".format(
"handwritten" if style.is_handwritten else "no handwritten"
)
)

for idx, page in enumerate(result.pages):
print("----Analyzing document from page #{}----".format(idx + 1))
print(
"Page has width: {} and height: {}, measured with unit: {}".format(
page.width, page.height, page.unit
)
)

for line_idx, line in enumerate(page.lines):
print(
"Line # {} has text content '{}' within bounding box '{}'".format(
line_idx,
line.content,
format_bounding_box(line.bounding_box),
)
)

for word in page.words:
print(
"...Word '{}' has a confidence of {}".format(
word.content, word.confidence
)
)

for selection_mark in page.selection_marks:
print(
"Selection mark is '{}' within bounding box '{}' and has a confidence of {}".format(
selection_mark.state,
format_bounding_box(selection_mark.bounding_box),
selection_mark.confidence,
)
)

for table_idx, table in enumerate(result.tables):
print(
"Table # {} has {} rows and {} columns".format(
table_idx, table.row_count, table.column_count
)
)
for region in table.bounding_regions:
print(
"Table # {} location on page: {} is {}".format(
table_idx,
region.page_number,
format_bounding_box(region.bounding_box),
)
)
for cell in table.cells:
print(
"...Cell[{}][{}] has text '{}'".format(
cell.row_index,
cell.column_index,
cell.content,
)
)
for region in cell.bounding_regions:
print(
"...content on page {} is within bounding box '{}'".format(
region.page_number,
format_bounding_box(region.bounding_box),
)
)

print("----Entities found in document----")
for idx, entity in enumerate(result.entities):
print("Entity of category '{}' with sub-category '{}'".format(entity.category, entity.sub_category))
print("...has content '{}'".format(entity.content))
print("...within '{}' bounding regions".format(format_bounding_region(entity.bounding_regions)))
print("...with confidence {}".format(entity.confidence))

print("----Key-value pairs found in document----")
for idx, kv_pair in enumerate(result.key_value_pairs):
if kv_pair.key:
print(
"Key '{}' found within '{}' bounding regions".format(
kv_pair.key.content,
format_bounding_region(kv_pair.key.bounding_regions),
)
)
if kv_pair.value:
print(
"Value '{}' found within '{}' bounding regions".format(
kv_pair.value.content,
format_bounding_region(kv_pair.value.bounding_regions),
)
)
print("----------------------------------------")

# [END analyze_document]


if __name__ == "__main__":
analyze_document()
Loading

0 comments on commit be52288

Please sign in to comment.