Model | Title | Resources | Remarks |
---|---|---|---|
Word2Vec | Efficient Estimation of Word Representations in Vector Space | [paper] | ------ |
negative sampling | Distributed Representations of Words and Phrases and their Compositionality | [paper] | ------ |
Transformer | Attention Is All You Need | [paper] | Google2017 |
Bert | Pre-training of Deep Bidirectional Transformers for Language Understanding | [paper] | Google2018 |
【斯坦福CS224N学习笔记】01-Introduction and Word Vectors
Word2Vec学习笔记(SVD、原理推导)
- Utils
- generate_w2v: train word embedding using gensim.
- data_helper: load datasets and data clearning, split to train and valid data.
- BaseModel: a base model, including parameters initialization, embedding initialization, loss function and accuracy, some base api like compile, fit and predict. etc.
- FastText
- TextCNN
- TextRNN
- TextBiLSTM
- TextRCNN
- HAN
- BiLSTM+Attention
- Transformer
- ...
- BiLSTM+CRF
- Bert+CRF
- Bert+BiLSTM+CRF
- Bert-Whitening
- Sentence-Bert
- SimCSE
- ESimCSE
- Siamese LSTM
- DSSM
- ESIM
- DIIN
- [ ]
- ONNX (OnnxRuntime by CPP)
- TensorRT