-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
39 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,39 @@ | ||
*********************************Support neural networks types********************************* **Single layer perceptron** - create function: `neurolab.net.newp() <http://packages.python.org/neurolab/lib.html#neurolab.net.newp>`_ - example of use: `newp <http://packages.python.org/neurolab/ex_newp.html>`_ - default train function: `neurolab.train.train_delta() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_delta>`_ - support train functions: train_gd, train_gda, train_gdm, train_gdx, train_rprop, train_bfgs, train_cg **Multilayer feed forward perceptron** - create function: `neurolab.net.newff() <http://packages.python.org/neurolab/lib.html#neurolab.net.newff>`_ - example of use: `newff <http://packages.python.org/neurolab/ex_newff.html>`_ - default train function: `neurolab.train.train_gdx() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_gdx>`_ - support train functions: train_gd, train_gda, train_gdm, train_rprop, train_bfgs, train_cg **Competing layer (Kohonen Layer)** - create function: `neurolab.net.newc() <http://packages.python.org/neurolab/lib.html#neurolab.net.newc>`_ - example of use: `newc <http://packages.python.org/neurolab/ex_newc.html>`_ - default train function: `neurolab.train.train_cwta() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_cwta>`_ - support train functions: train_wta **Learning Vector Quantization (LVQ)** - create function: `neurolab.net.newlvq() <http://packages.python.org/neurolab/lib.html#neurolab.net.newlvq>`_ - example of use: `newlvq <http://packages.python.org/neurolab/ex_newlvq.html>`_ - default train function: `neurolab.train.train_lvq() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_lvq>`_ **Elman Recurrent network** - create function: `neurolab.net.newelm() <http://packages.python.org/neurolab/lib.html#neurolab.net.newelm>`_ - example of use: `newelm <http://packages.python.org/neurolab/ex_newelm.html>`_ - default train function: `neurolab.train.train_gdx() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_gdx>`_ - support train functions: train_gd, train_gda, train_gdm, train_rprop, train_bfgs, train_cg **Hopfield Recurrent network** - create function: `neurolab.net.newhop() <http://packages.python.org/neurolab/lib.html#neurolab.net.newhop>`_ - example of use: `newhop <http://packages.python.org/neurolab/ex_newhop.html>`_ **Hemming Recurrent network** - create function: `neurolab.net.newhem() <http://packages.python.org/neurolab/lib.html#neurolab.net.newhem>`_ - example of use: `newhem <http://packages.python.org/neurolab/ex_newhem.html>`_ | ||
********************************* | ||
Support neural networks types | ||
********************************* | ||
|
||
**Single layer perceptron** | ||
- create function: `neurolab.net.newp() <http://packages.python.org/neurolab/lib.html#neurolab.net.newp>`_ | ||
- example of use: `newp <http://packages.python.org/neurolab/ex_newp.html>`_ | ||
- default train function: `neurolab.train.train_delta() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_delta>`_ | ||
- support train functions: train_gd, train_gda, train_gdm, train_gdx, train_rprop, train_bfgs, train_cg | ||
|
||
**Multilayer feed forward perceptron** | ||
- create function: `neurolab.net.newff() <http://packages.python.org/neurolab/lib.html#neurolab.net.newff>`_ | ||
- example of use: `newff <http://packages.python.org/neurolab/ex_newff.html>`_ | ||
- default train function: `neurolab.train.train_bfgs() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_bfgs>`_ | ||
- support train functions: train_gd, train_gda, train_gdm, train_rprop, train_bfgs, train_cg | ||
|
||
**Competing layer (Kohonen Layer)** | ||
- create function: `neurolab.net.newc() <http://packages.python.org/neurolab/lib.html#neurolab.net.newc>`_ | ||
- example of use: `newc <http://packages.python.org/neurolab/ex_newc.html>`_ | ||
- default train function: `neurolab.train.train_cwta() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_cwta>`_ | ||
- support train functions: train_wta | ||
|
||
**Learning Vector Quantization (LVQ)** | ||
- create function: `neurolab.net.newlvq() <http://packages.python.org/neurolab/lib.html#neurolab.net.newlvq>`_ | ||
- example of use: `newlvq <http://packages.python.org/neurolab/ex_newlvq.html>`_ | ||
- default train function: `neurolab.train.train_lvq() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_lvq>`_ | ||
|
||
**Elman Recurrent network** | ||
- create function: `neurolab.net.newelm() <http://packages.python.org/neurolab/lib.html#neurolab.net.newelm>`_ | ||
- example of use: `newelm <http://packages.python.org/neurolab/ex_newelm.html>`_ | ||
- default train function: `neurolab.train.train_gdx() <http://packages.python.org/neurolab/lib.html#neurolab.train.train_gdx>`_ | ||
- support train functions: train_gd, train_gda, train_gdm, train_rprop, train_bfgs, train_cg | ||
|
||
**Hopfield Recurrent network** | ||
- create function: `neurolab.net.newhop() <http://packages.python.org/neurolab/lib.html#neurolab.net.newhop>`_ | ||
- example of use: `newhop <http://packages.python.org/neurolab/ex_newhop.html>`_ | ||
**Hemming Recurrent network** | ||
- create function: `neurolab.net.newhem() <http://packages.python.org/neurolab/lib.html#neurolab.net.newhem>`_ | ||
- example of use: `newhem <http://packages.python.org/neurolab/ex_newhem.html>`_ |