-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrank_eval.py
181 lines (149 loc) · 4.9 KB
/
rank_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# encoding=utf-8
# rankedlist / unrankedlist structure: list of pairs of (predict_value, real_value)
# unrankedlist_allusers: dict of different users' unrankedlist, keys are the user ID
# metrics include: MAP, nDCG@K, precison@K, MRR
import math
import numpy as np
def cal_dcg_k(rankedlist, k):
res = 0.0
for i in xrange(k):
numerator = 2 ** rankedlist[i][1] - 1.0
denominator = math.log(2+i, 2)
res += numerator / denominator
return res
def cal_ndcg_k(unrankedlist, k):
rankedlist = sorted(unrankedlist, key=lambda x: x[0], reverse=True)
dcg = cal_dcg_k(rankedlist, k)
rankedlist = sorted(unrankedlist, key=lambda x: x[1], reverse=True)
idcg = cal_dcg_k(rankedlist, k)
# If all in list are not relevant, the list is not counted
if idcg == 0:
return -1
else:
return dcg / idcg
def cal_ndcg_all(unrankedlist_allusers, k): # Cal nDCG@K over all users
ndcg = 0.0
users_count = len(unrankedlist_allusers.keys())
for u in unrankedlist_allusers.keys():
unrankedlist = unrankedlist_allusers[u]
if k <= len(unrankedlist) and len(unrankedlist) >= 2:
res = cal_ndcg_k(unrankedlist, k)
if res != -1:
ndcg += res
else:
users_count -= 1
else:
users_count -= 1
if users_count <= 0:
ndcg = -1
else:
ndcg /= users_count
return ndcg
def cal_ndcg_nok(unrankedlist_allusers): # Cal nDCG over all users
ndcg = 0.0
users_count = len(unrankedlist_allusers.keys())
for u in unrankedlist_allusers.keys():
unrankedlist = unrankedlist_allusers[u]
k = len(unrankedlist)
if k >= 2:
res = cal_ndcg_k(unrankedlist, k)
if res != -1:
ndcg += res
else:
users_count -= 1
else:
users_count -= 1
if users_count <= 0:
ndcg = -1
else:
ndcg /= users_count
return ndcg
def cal_mrr(unrankedlist_allusers): # Cal MRR over all users
mrr = 0.0
users_count = 0
for u in unrankedlist_allusers.keys():
unrankedlist = unrankedlist_allusers[u]
l = len(unrankedlist)
if l >= 2:
rankedlist = sorted(unrankedlist, key=lambda x: x[0], reverse=True)
pos = 1
for m in xrange(l):
if rankedlist[m][1] == 1:
break
pos += 1
if pos != l + 1:
mrr += 1 / float(pos)
users_count += 1
if users_count <= 0:
mrr = -1
else:
mrr /= users_count
return mrr
def cal_ap(rankedlist):
totalsum = np.sum(rankedlist, dtype=np.int)
# If all in list are not relevant, the list is not counted
if totalsum == 0:
return -1
pos_ones = np.nonzero(rankedlist)[0] + 1
ones = np.array([n for n in range(1, totalsum + 1)])
ap = ones.astype(np.float) / pos_ones
return ap.mean()
def cal_map(unrankedlist_allusers): # Cal MAP over all users
MAP = 0.0
users_count = 0
for u in unrankedlist_allusers.keys():
rankedlist = unrankedlist_allusers[u]
if len(rankedlist) >= 2:
rankedlist = sorted(rankedlist, key=lambda x: x[0], reverse=True)
rankedlist = np.array(rankedlist)
ap = cal_ap(rankedlist[:, 1])
if ap != -1:
users_count += 1
MAP += ap
if users_count <= 0:
MAP = -1
else:
MAP /= users_count
return MAP
def cal_pn(rankedlist, n):
ones = 0.0
for m in xrange(n):
if rankedlist[m][1] == 1:
ones += 1
return ones/float(n)
def cal_precision_N(unrankedlist_allusers, n): # Cal pre@N over all users
precision = 0.0
users_count = len(unrankedlist_allusers.keys())
for u in unrankedlist_allusers.keys():
unrankedlist = unrankedlist_allusers[u]
# If all in list are not relevant, the user is not counted
totalsum = 0.0
for m in xrange(len(unrankedlist)):
totalsum += unrankedlist[m][1]
if totalsum == 0:
users_count -= 1
continue
rankedlist = sorted(unrankedlist, key=lambda x: x[0], reverse=True)
if n <= len(rankedlist) and len(rankedlist) >= 2:
precision += cal_pn(rankedlist, n)
else:
users_count -= 1
if users_count <= 0:
precision = -1
else:
precision /= users_count
return precision
if __name__ == '__main__':
uNum = 3
scorelist = {}
scorelist[0] = [(0.5, 1), (0.8, 0), (0.2, 0)]
scorelist[1] = [(0.5, 1), (0.8, 1), (0.2, 0), (0.7, 0)]
scorelist[2] = [(0.4, 1), (0.5, 1), (0.8, 0), (0.2, 0)]
s = cal_map(scorelist)
z = cal_precision_N(scorelist, 3)
x = cal_ndcg_all(scorelist, 3)
y = cal_mrr(scorelist)
print "MAP: ", s
print "P@3: ", z
print "nDCG@3: ", x
print "MRR: ", y