Skip to content

Topological Neural Networks go Persistent, Equivariant and Continuous

Notifications You must be signed in to change notification settings

Aalto-QuML/TopNets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Topological Neural Networks go Persistent, Equivariant and Continuous

Yogesh Verma | Amauri H. Souza | Vikas Garg

The repository is developed on the intersection of RePHINE, TOGL, EMPSN and AbODE. Please refer to their repos for specific requirements.

Prerequisites

Training

Graph Classification

Comparison with RePHINE

cd RePHINE/
python -u main_2d.py  --dataset {PROTEINS_full/NCI109/NCI1/IMDB-BINARY}  --gnn {gin/gcn} --diagram_type {standard/rephine}  --nsteps 20 

Comparison with TOGL

cd RePHINE/
python -u main_togl.py --dataset {ENZYMES/DD/Proteins} --gnn {gin/gcn}

QM9 Property Prediction

cd empsn/
python -u main_qm9.py --target_name {mu,alpha,gap,r2,zpve,Cv,homo,lumo} --epochs 1000 --dis 4.0 --dim 2 --num_hidden 77 --seed 42 --model_name {empsn_rephine_cont/empsn_rephine}

CDR-H3 Antibody Design

Download the train/test/val files from here. Kindly add the paths to these files in train_topnets.py file.

cd Antibody/
python -u train_topnets.py --cdr 3

About

Topological Neural Networks go Persistent, Equivariant and Continuous

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published