Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

upgrade LabeledSpanLengthCollector to SpanLengthCollector #352

Merged
merged 3 commits into from
Sep 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 105 additions & 13 deletions src/pytorch_ie/metrics/statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,11 @@

from transformers import AutoTokenizer, PreTrainedTokenizer

from pytorch_ie import tokenize_document
from pytorch_ie.annotations import Span
from pytorch_ie.core import Document, DocumentStatistic
from pytorch_ie.documents import TextBasedDocument
from pytorch_ie.documents import TextBasedDocument, TokenBasedDocument
from pytorch_ie.utils.hydra import resolve_optional_document_type

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -72,24 +75,113 @@ def _collect(self, doc: Document) -> List[int]:
return lengths


class LabeledSpanLengthCollector(DocumentStatistic):
"""Collects the length of spans in a field per label, e.g. to collect the length of entities per type.
class SpanLengthCollector(DocumentStatistic):
"""Collects the lengths of Span annotations. If labels are provided, the lengths collected per
label.

The field should be a list of elements with a label, a start and end attribute.
If a tokenizer is provided, the span length is calculated in means of tokens, otherwise in
means of characters.
"""

DEFAULT_AGGREGATION_FUNCTIONS = ["mean", "std", "min", "max", "len"]
DEFAULT_AGGREGATION_FUNCTIONS = ["len", "mean", "std", "min", "max"]

def __init__(self, field: str, **kwargs):
def __init__(
self,
layer: str,
tokenize: bool = False,
tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
tokenized_document_type: Optional[Union[str, Type[TokenBasedDocument]]] = None,
labels: Optional[Union[List[str], str]] = None,
label_attribute: str = "label",
tokenize_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.field = field
self.layer = layer
if isinstance(labels, str) and labels != "INFERRED":
raise ValueError("labels must be a list of strings or 'INFERRED'")
if labels == "INFERRED":
logger.warning(
f"Inferring labels with {self.__class__.__name__} from data produces wrong results "
f"for certain aggregation functions (e.g. 'mean', 'std', 'min') because zero values "
f"are not included in the calculation. We remove these aggregation functions from "
f"this collector, but be aware that the results may be wrong for your own aggregation "
f"functions that rely on zero values."
)
self.aggregation_functions = {
name: func
for name, func in self.aggregation_functions.items()
if name not in ["mean", "std", "min"]
}
self.labels = labels
self.label_field = label_attribute
self.tokenize = tokenize
if self.tokenize:
if tokenizer is None:
raise ValueError(
"tokenizer must be provided to calculate the span length in means of tokens"
)
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
self.tokenizer = tokenizer
resolved_tokenized_document_type = resolve_optional_document_type(
tokenized_document_type
)
if resolved_tokenized_document_type is None:
raise ValueError(
"tokenized_document_type must be provided to calculate the span length in means of tokens"
)
if not (
isinstance(resolved_tokenized_document_type, type)
and issubclass(resolved_tokenized_document_type, TokenBasedDocument)
):
raise TypeError(
f"tokenized_document_type must be a subclass of TokenBasedDocument, but it is: "
f"{resolved_tokenized_document_type}"
)
self.tokenized_document_type = resolved_tokenized_document_type
self.tokenize_kwargs = tokenize_kwargs or {}

def _collect(self, doc: Document) -> Union[List[int], Dict[str, List[int]]]:
docs: Union[List[Document], List[TokenBasedDocument]]
if self.tokenize:
if not isinstance(doc, TextBasedDocument):
raise ValueError(
"doc must be a TextBasedDocument to calculate the span length in means of tokens"
)
if not isinstance(doc, TextBasedDocument):
raise ValueError(
"doc must be a TextBasedDocument to calculate the span length in means of tokens"
)
docs = tokenize_document(
doc,
tokenizer=self.tokenizer,
result_document_type=self.tokenized_document_type,
**self.tokenize_kwargs,
)
else:
docs = [doc]

def _collect(self, doc: Document) -> Dict[str, List[int]]:
field_obj = getattr(doc, self.field)
counts = defaultdict(list)
for elem in field_obj:
counts[elem.label].append(elem.end - elem.start)
return dict(counts)
values: Dict[str, List[int]]
if isinstance(self.labels, str):
values = defaultdict(list)
else:
values = {label: [] for label in self.labels or ["ALL"]}
for doc in docs:
layer_obj = getattr(doc, self.layer)
for span in layer_obj:
if not isinstance(span, Span):
raise TypeError(
f"span length calculation is not yet supported for {type(span)}"
)
length = span.end - span.start
if self.labels is None:
label = "ALL"
else:
label = getattr(span, self.label_field)
values[label].append(length)

return values if self.labels is not None else values["ALL"]


class DummyCollector(DocumentStatistic):
Expand Down
64 changes: 49 additions & 15 deletions tests/core/test_statistic.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,12 @@
from pytorch_ie import DatasetDict
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.core import AnnotationList, annotation_field
from pytorch_ie.documents import TextBasedDocument
from pytorch_ie.documents import TextBasedDocument, TokenBasedDocument
from pytorch_ie.metrics.statistics import (
DummyCollector,
FieldLengthCollector,
LabelCountCollector,
LabeledSpanLengthCollector,
SpanLengthCollector,
SubFieldLengthCollector,
TokenCountCollector,
)
Expand Down Expand Up @@ -113,30 +113,41 @@ def test_statistics(dataset):
"validation": {"max": 187, "mean": 89.66666666666667, "min": 17, "std": 71.5603863103665},
}

statistic = LabeledSpanLengthCollector(field="entities")
statistic = SpanLengthCollector(layer="entities")
values = statistic(dataset)
assert values == {
"train": {"len": 5, "mean": 7.6, "std": 4.223742416388575, "min": 2, "max": 15},
"validation": {
"len": 6,
"mean": 10.833333333333334,
"std": 2.9674156357941426,
"min": 6,
"max": 14,
},
"test": {"len": 5, "mean": 9.4, "std": 5.748043145279966, "min": 5, "max": 20},
}

statistic = SpanLengthCollector(layer="entities", labels="INFERRED")
values = statistic(dataset)
assert values == {
"train": {
"ORG": {"mean": 2.0, "std": 0.0, "min": 2, "max": 2, "len": 1},
"MISC": {"mean": 6.5, "std": 0.5, "min": 6, "max": 7, "len": 2},
"PER": {"mean": 15.0, "std": 0.0, "min": 15, "max": 15, "len": 1},
"LOC": {"mean": 8.0, "std": 0.0, "min": 8, "max": 8, "len": 1},
"ORG": {"max": 2, "len": 1},
"MISC": {"max": 7, "len": 2},
"PER": {"max": 15, "len": 1},
"LOC": {"max": 8, "len": 1},
},
"test": {
"LOC": {
"mean": 10.333333333333334,
"std": 6.847546194724712,
"min": 5,
"max": 20,
"len": 3,
},
"PER": {"mean": 8.0, "std": 3.0, "min": 5, "max": 11, "len": 2},
"PER": {"max": 11, "len": 2},
},
"validation": {
"ORG": {"mean": 12.0, "std": 2.8284271247461903, "min": 8, "max": 14, "len": 3},
"LOC": {"mean": 6.0, "std": 0.0, "min": 6, "max": 6, "len": 1},
"MISC": {"mean": 11.0, "std": 0.0, "min": 11, "max": 11, "len": 1},
"PER": {"mean": 12.0, "std": 0.0, "min": 12, "max": 12, "len": 1},
"ORG": {"max": 14, "len": 3},
"LOC": {"max": 6, "len": 1},
"MISC": {"max": 11, "len": 1},
"PER": {"max": 12, "len": 1},
},
}

Expand All @@ -163,3 +174,26 @@ def test_statistics_with_tokenize(dataset):
"train": {"max": 9, "mean": 5.666666666666667, "min": 2, "std": 2.8674417556808756},
"validation": {"max": 38, "mean": 18.333333333333332, "min": 6, "std": 14.055445761538678},
}

@dataclasses.dataclass
class TokenDocumentWithLabeledEntities(TokenBasedDocument):
entities: AnnotationList[LabeledSpan] = annotation_field(target="tokens")

statistic = SpanLengthCollector(
layer="entities",
tokenize=True,
tokenizer="bert-base-uncased",
tokenized_document_type=TokenDocumentWithLabeledEntities,
)
values = statistic(dataset)
assert values == {
"test": {"len": 5, "max": 4, "mean": 2.4, "min": 1, "std": 1.2000000000000002},
"train": {"len": 5, "max": 2, "mean": 1.2, "min": 1, "std": 0.4},
"validation": {
"len": 6,
"max": 2,
"mean": 1.3333333333333333,
"min": 1,
"std": 0.4714045207910317,
},
}