This repository provides scripts to automatically download, patch and compile the Linux Kernel from the official Linux git repository, with a selection of patches aiming for better desktop/gaming experience. The provided patches can be enabled/disabled by editing the customization.cfg
file and/or by following the interactive install script. You can use an external config file (default is $HOME/.config/frogminer/linux-tkg.cfg
, tweakable with the _EXT_CONFIG_PATH
variable in customization.cfg
). You can also use your own patches (more information in customization.cfg
file).
-
Non-pacman distros support can be considered experimental. You're invited to report issues you might encounter with it.
-
If your distro isn't using systemd, please set _configfile="running-kernel" in customization.cfg or you might end up with a non-bootable kernel
-
Keep in mind building recent linux kernels with GCC will require ~20-25GB of disk space. Using llvm/clang, LTO, ccache and/or enabling more drivers in the defconfig will push that requirement higher, so make sure you have enough free space on the volume you're using to build.
-
In
intel_pstate
driver, frequency scaling aggressiveness has been changed with kernel 5.5 which results in stutters and poor performance in low/medium load scenarios (for higher power savings). As a workaround for our gaming needs, we are setting it to passive mode to make use of theacpi_cpufreq
governor passthrough, keeping full support for turbo frequencies. It's combined with our aggressive ondemand governor by default for good performance on most CPUs while keeping frequency scaling for power savings. In a typical low/medium load scenario (Core i7 9700k, playing Mario Galaxy on Dolphin emulator) intel_pstate in performance mode gives a stuttery 45-50 fps experience, while passive mode + aggressive ondemand offers a locked 60 fps. -
Nvidia's proprietary drivers might need to be patched if they don't support your chosen kernel OOTB: Frogging-Family nvidia-all can do that automatically for you.
-
Note regarding kernels older than 5.9 on Arch Linux: since the switch to
zstd
compressedinitramfs
by default, you will face aninvalid magic at start of compress
error by default. You can workaround the issue by editing/etc/mkinitcpio.conf
to uncomment theCOMPRESSION="lz4"
(for example, since that's the best option after zstd) line and regeneratinginitramfs
for all kernels withsudo mkinitpcio -P
CFS is the only CPU scheduler available in the "vanilla" kernel sources ≤ 6.5. EEVDF is the only CPU scheduler available in the "vanilla" kernel sources ≥ 6.6.
Its current implementation doesn't allow for injecting additional schedulers at kernel level, and requires replacing it. Only one scheduler can be patched in at a time.
However, using Sched-ext, it's possible to inject CPU schedulers at runtime. We offer support for it on ≥ 6.8 by default.
Arch users get scx schedulers from the scx-scheds
package or on the AUR thanks to @sirlucjan (for persistence, set scheduler in "/etc/default/scx" and enable the scx
service).
Alternative schedulers are optionally available in linux-tkg at build time:
- Project C / PDS & BMQ by Alfred Chen: blog, code repository
- MuQSS by Con Kolivas : blog, code repository
- CacULE by Hamad Marri - CFS based : code repository
- Task Type (TT) by Hamad Marri - CFS based : code repository
- BORE (Burst-Oriented Response Enhancer) by Masahito Suzuki - CFS/EEVDF based : code repository
- Undead PDS : TkG's port of the pre-Project C "PDS-mq" scheduler by Alfred Chen. While PDS-mq got dropped with kernel 5.1 in favor of its BMQ evolution/rework, it wasn't on par with PDS-mq in gaming. "U" PDS still performed better in some cases than other schedulers, so it's been kept undead for a while.
These alternative schedulers may offer a better performance/latency ratio in some scenarios. The availability of each scheduler depends on the chosen Kernel version: the script will display what's available on a per-version basis.
- Memory management and swapping tweaks
- Scheduling tweaks
CFS/EEVDF
tweaks- Using the "Cake" network queue management system
- Using
vm.max_map_count=16777216
by default - Cherry-picked patches from Clear Linux's patchset
The customization.cfg
file offers many toggles for extra tweaks:
- NTsync,
Fsync
andFutex2
(deprecated) support: can improve the performance in games, needs a patched wine like wine-tkg - Graysky's per-CPU-arch native optimizations: tunes the compiled code to to a specified CPU
- Compile with GCC or Clang with optional
O2
/O3
andLTO
(Clang only) optimizations.- Warning regarding DKMS modules prior to v3.0.2 (2021-11-21) and Clang:
DKMS
version v3.0.1 and earlier will default to using GCC, which will fail to build modules against a Clang-built kernel. This will - for example - break Nvidia drivers. Forcing olderDKMS
to use Clang can be done but isn't recommended.
- Warning regarding DKMS modules prior to v3.0.2 (2021-11-21) and Clang:
- Using Modprobed-db's database can reduce the compilation time and produce a smaller kernel which will only contain the modules listed in it. NOT recommended
- Warning: make sure to read thoroughly about it first since it comes with caveats that can lead to an unbootable kernel.
- "Zenify" patchset using core blk, mm and scheduler tweaks from Zen
ZFS
FPU symbols (<5.9)- Overrides for missing ACS capabilities
- Waydroid support
- OpenRGB support
- Provide own kernel
.config
file - ...
To apply your own patch files using the provided scripts, you will need to put them in a linux<VERSION><PATCHLEVEL>-tkg-userpatches
folder -- where VERSION and PATCHLEVEL are the kernel version and patch level, as specified in linux Makefile, the patch works on, e.g linux65-tkg-userpatches
-- at the same level as the PKGBUILD
file, with the .mypatch
extension. The script will by default ask if you want to apply them, one by one. The option _user_patches
should be set to true
in the customization.cfg
file for this to work.
For all the supported linux distributions, linux-tkg
has to be cloned with git
. Since it keeps a clone of the kernel's sources within (linux-src-git
, created during the first build after a fresh clone), it is recommended to keep the cloned linux-tkg
folder and simply update it with git pull
, the install script does the necessary cleanup at every run.
git clone https://github.com/Frogging-Family/linux-tkg.git
cd linux-tkg
# Optional: edit the "customization.cfg" file
makepkg -si
The script will use a slightly modified Arch config from the linux-tkg-config
folder, it can be changed through the _configfile
variable in customization.cfg
. The options selected at build-time are installed to /usr/share/doc/$pkgbase/customization.cfg
, where $pkgbase
is the package name.
Note: the base-devel
package group is expected to be installed, see here for more information.
Important notes: An issue has been reported for Ubuntu where the stock kernel cannot boot properly any longer, the whereabouts are not entirely clear (only a single user reported that, see #436).
The interactive install.sh
script will create, depending on the selected distro, .deb
or .rpm
packages, move them in the the subfolder DEBS
or RPMS
then prompts to install them with the distro's package manager.
git clone https://github.com/Frogging-Family/linux-tkg.git
cd linux-tkg
# Optional: edit the "customization.cfg" file
./install.sh install
Uninstalling custom kernels installed through the script has to be done
manually. install.sh
can can help out with some useful information:
cd path/to/linux-tkg
./install.sh uninstall-help
The script will use a slightly modified Arch config from the linux-tkg-config
folder, it can be changed through the _configfile
variable in customization.cfg
.
The interactive install.sh
script can be used to perform a "Generic" install by choosing Generic
when prompted. It git clones the kernel tree in the linux-src-git
folder, patches the code and edits a .config
file in it. The commands to do are the following:
git clone https://github.com/Frogging-Family/linux-tkg.git
cd linux-tkg
# Optional: edit the "customization.cfg" file
./install.sh install
The script will compile the kernel then prompt before doing the following:
sudo cp -R . /usr/src/linux-tkg-${kernel_flavor}
cd /usr/src/linux-tkg-${kernel_flavor}
sudo make modules_install
sudo make install
sudo dracut --force --hostonly --kver $_kernelname $_dracut_options
sudo grub-mkconfig -o /boot/grub/grub.cfg
Notes:
- All the needed dependencies to patch, configure, compile or install the kernel are expected to be installed by the user beforehand.
- If you only want the script to patch the sources in
linux-src-git
, you can use./install.sh config
${kernel_flavor}
is a default naming scheme but can be customized with the variable_kernel_localversion
incustomization.cfg
._dracut_options
is a variable that can be changed incustomization.cfg
._libunwind_replace
is a variable that can be changed incustomization.cfg
for replacinglibunwind
withllvm-libunwind
.- The script uses Arch's
.config
file as a base. A custom one can be provided through_configfile
incustomization.cfg
. - The installed files will not be tracked by your package manager and uninstalling requires manual intervention.
./install.sh uninstall-help
can help with useful information if your install procedure follows theGeneric
approach.
The interactive install.sh
script supports Gentoo by following the same procedure as Generic
, symlinks the sources folder in /usr/src/
to /usr/src/linux
, then offers to do an emerge @module-rebuild
for convenience
git clone https://github.com/Frogging-Family/linux-tkg.git
cd linux-tkg
# Optional: edit the "customization.cfg" file
./install.sh install
Note: If you're running openrc, you'll want to set _configfile="running-kernel"
to use your current kernel's defconfig instead of Arch's. Else the resulting kernel won't boot.