Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SWAPI: rename CDF variable names to match algorithm document #1042

Merged
merged 1 commit into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions imap_processing/swapi/l1/swapi_l1.py
Original file line number Diff line number Diff line change
Expand Up @@ -607,7 +607,7 @@ def process_swapi_science(
)

# Add quality flags to the dataset
dataset["swp_flags"] = swp_flags
dataset["swp_l1a_flags"] = swp_flags
# ===================================================================
# Step 4: Calculate uncertainty
# ===================================================================
Expand All @@ -619,32 +619,32 @@ def process_swapi_science(
# Above uncertaintly formula will change in the future.
# Replace it with actual formula once SWAPI provides it.
# Right now, we are using sqrt(count) as a placeholder
dataset["swp_pcem_err_plus"] = xr.DataArray(
dataset["swp_pcem_counts_err_plus"] = xr.DataArray(
np.sqrt(swp_pcem_counts),
dims=["epoch", "energy"],
attrs=cdf_manager.get_variable_attributes("pcem_uncertainty"),
)
dataset["swp_pcem_err_minus"] = xr.DataArray(
dataset["swp_pcem_counts_err_minus"] = xr.DataArray(
np.sqrt(swp_pcem_counts),
dims=["epoch", "energy"],
attrs=cdf_manager.get_variable_attributes("pcem_uncertainty"),
)
dataset["swp_scem_err_plus"] = xr.DataArray(
dataset["swp_scem_counts_err_plus"] = xr.DataArray(
np.sqrt(swp_scem_counts),
dims=["epoch", "energy"],
attrs=cdf_manager.get_variable_attributes("scem_uncertainty"),
)
dataset["swp_scem_err_minus"] = xr.DataArray(
dataset["swp_scem_counts_err_minus"] = xr.DataArray(
np.sqrt(swp_scem_counts),
dims=["epoch", "energy"],
attrs=cdf_manager.get_variable_attributes("scem_uncertainty"),
)
dataset["swp_coin_err_plus"] = xr.DataArray(
dataset["swp_coin_counts_err_plus"] = xr.DataArray(
np.sqrt(swp_coin_counts),
dims=["epoch", "energy"],
attrs=cdf_manager.get_variable_attributes("coin_uncertainty"),
)
dataset["swp_coin_err_minus"] = xr.DataArray(
dataset["swp_coin_counts_err_minus"] = xr.DataArray(
np.sqrt(swp_coin_counts),
dims=["epoch", "energy"],
attrs=cdf_manager.get_variable_attributes("coin_uncertainty"),
Expand Down
38 changes: 25 additions & 13 deletions imap_processing/swapi/l2/swapi_l2.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def swapi_l2(l1_dataset: xr.Dataset, data_version: str) -> xr.Dataset:
"epoch",
"energy",
"energy_label",
"swp_flags",
"swp_l1a_flags",
]
l2_dataset = l1_dataset[l1_data_keys]

Expand All @@ -74,29 +74,41 @@ def swapi_l2(l1_dataset: xr.Dataset, data_version: str) -> xr.Dataset:
l2_dataset["swp_coin_rate"].attrs = cdf_manager.get_variable_attributes("coin_rate")

# update uncertainty
l2_dataset["swp_pcem_unc_plus"] = l1_dataset["swp_pcem_err_plus"] / TIME_PER_BIN
l2_dataset["swp_pcem_unc_minus"] = l1_dataset["swp_pcem_err_minus"] / TIME_PER_BIN
l2_dataset["swp_scem_unc_plus"] = l1_dataset["swp_scem_err_plus"] / TIME_PER_BIN
l2_dataset["swp_scem_unc_minus"] = l1_dataset["swp_scem_err_minus"] / TIME_PER_BIN
l2_dataset["swp_coin_unc_plus"] = l1_dataset["swp_coin_err_plus"] / TIME_PER_BIN
l2_dataset["swp_coin_unc_minus"] = l1_dataset["swp_coin_err_minus"] / TIME_PER_BIN
l2_dataset["swp_pcem_rate_err_plus"] = (
l1_dataset["swp_pcem_counts_err_plus"] / TIME_PER_BIN
)
l2_dataset["swp_pcem_rate_err_minus"] = (
l1_dataset["swp_pcem_counts_err_minus"] / TIME_PER_BIN
)
l2_dataset["swp_scem_rate_err_plus"] = (
l1_dataset["swp_scem_counts_err_plus"] / TIME_PER_BIN
)
l2_dataset["swp_scem_rate_err_minus"] = (
l1_dataset["swp_scem_counts_err_minus"] / TIME_PER_BIN
)
l2_dataset["swp_coin_rate_err_plus"] = (
l1_dataset["swp_coin_counts_err_plus"] / TIME_PER_BIN
)
l2_dataset["swp_coin_rate_err_minus"] = (
l1_dataset["swp_coin_counts_err_minus"] / TIME_PER_BIN
)
# update attrs
l2_dataset["swp_pcem_unc_plus"].attrs = cdf_manager.get_variable_attributes(
l2_dataset["swp_pcem_rate_err_plus"].attrs = cdf_manager.get_variable_attributes(
"pcem_uncertainty"
)
l2_dataset["swp_pcem_unc_minus"].attrs = cdf_manager.get_variable_attributes(
l2_dataset["swp_pcem_rate_err_minus"].attrs = cdf_manager.get_variable_attributes(
"pcem_uncertainty"
)
l2_dataset["swp_scem_unc_plus"].attrs = cdf_manager.get_variable_attributes(
l2_dataset["swp_scem_rate_err_plus"].attrs = cdf_manager.get_variable_attributes(
"scem_uncertainty"
)
l2_dataset["swp_scem_unc_minus"].attrs = cdf_manager.get_variable_attributes(
l2_dataset["swp_scem_rate_err_minus"].attrs = cdf_manager.get_variable_attributes(
"scem_uncertainty"
)
l2_dataset["swp_coin_unc_plus"].attrs = cdf_manager.get_variable_attributes(
l2_dataset["swp_coin_rate_err_plus"].attrs = cdf_manager.get_variable_attributes(
"coin_uncertainty"
)
l2_dataset["swp_coin_unc_minus"].attrs = cdf_manager.get_variable_attributes(
l2_dataset["swp_coin_rate_err_minus"].attrs = cdf_manager.get_variable_attributes(
"coin_uncertainty"
)

Expand Down
2 changes: 1 addition & 1 deletion imap_processing/tests/swapi/test_swapi_l1.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ def test_process_swapi_science(decom_test_data):
# Test that we calculated uncertainty correctly
np.testing.assert_allclose(
np.sqrt(processed_data["swp_pcem_counts"][0]),
processed_data["swp_pcem_err_plus"][0],
processed_data["swp_pcem_counts_err_plus"][0],
)

# make PLAN_ID data incorrect. Now processed data should have less sweeps
Expand Down
3 changes: 2 additions & 1 deletion imap_processing/tests/swapi/test_swapi_l2.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,5 +17,6 @@ def test_swapi_l2_cdf(swapi_l0_test_data_path):

# Test uncertainty variables are as expected
np.testing.assert_array_equal(
l2_dataset["swp_pcem_unc_plus"], l1_dataset["swp_pcem_err_plus"] / TIME_PER_BIN
l2_dataset["swp_pcem_rate_err_plus"],
l1_dataset["swp_pcem_counts_err_plus"] / TIME_PER_BIN,
)
Loading