Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Check type of input in dpnp.repeat to raise a proper validation exception if any #1894

Merged
merged 3 commits into from
Jun 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 16 additions & 11 deletions dpnp/dpnp_iface_manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -1248,12 +1248,16 @@ def repeat(a, repeats, axis=None):
----------
x : {dpnp.ndarray, usm_ndarray}
Input array.
repeat : int or array of int
repeats : {int, tuple, list, range, dpnp.ndarray, usm_ndarray}
The number of repetitions for each element. `repeats` is broadcasted to
fit the shape of the given axis.
axis : int, optional
If `repeats` is an array, it must have an integer data type.
Otherwise, `repeats` must be a Python integer or sequence of Python
integers (i.e., a tuple, list, or range).
axis : {None, int}, optional
The axis along which to repeat values. By default, use the flattened
input array, and return a flat output array.
Default: ``None``.

Returns
-------
Expand All @@ -1263,8 +1267,8 @@ def repeat(a, repeats, axis=None):

See Also
--------
:obj:`dpnp.tile` : Construct an array by repeating A the number of times
given by reps.
:obj:`dpnp.tile` : Tile an array.
:obj:`dpnp.unique` : Find the unique elements of an array.

Examples
--------
Expand All @@ -1286,14 +1290,15 @@ def repeat(a, repeats, axis=None):

"""

rep = repeats
if isinstance(repeats, dpnp_array):
rep = dpnp.get_usm_ndarray(repeats)
dpnp.check_supported_arrays_type(a)
if not isinstance(repeats, (int, tuple, list, range)):
repeats = dpnp.get_usm_ndarray(repeats)

if axis is None and a.ndim > 1:
usm_arr = dpnp.get_usm_ndarray(a.flatten())
else:
usm_arr = dpnp.get_usm_ndarray(a)
usm_arr = dpt.repeat(usm_arr, rep, axis=axis)
a = dpnp.ravel(a)

usm_arr = dpnp.get_usm_ndarray(a)
usm_arr = dpt.repeat(usm_arr, repeats, axis=axis)
return dpnp_array._create_from_usm_ndarray(usm_arr)


Expand Down
111 changes: 0 additions & 111 deletions tests/test_arraymanipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -1016,114 +1016,3 @@ def test_can_cast():
assert dpnp.can_cast(X, "float32") == numpy.can_cast(X_np, "float32")
assert dpnp.can_cast(X, dpnp.int32) == numpy.can_cast(X_np, numpy.int32)
assert dpnp.can_cast(X, dpnp.int64) == numpy.can_cast(X_np, numpy.int64)


def test_repeat_scalar_sequence_agreement():
x = dpnp.arange(5, dtype="i4")
expected_res = dpnp.empty(10, dtype="i4")
expected_res[1::2], expected_res[::2] = x, x

# scalar case
reps = 2
res = dpnp.repeat(x, reps)
assert dpnp.all(res == expected_res)

# tuple
reps = (2, 2, 2, 2, 2)
res = dpnp.repeat(x, reps)
assert dpnp.all(res == expected_res)


def test_repeat_as_broadcasting():
reps = 5
x = dpnp.arange(reps, dtype="i4")
x1 = x[:, dpnp.newaxis]
expected_res = dpnp.broadcast_to(x1, (reps, reps))

res = dpnp.repeat(x1, reps, axis=1)
assert dpnp.all(res == expected_res)

x2 = x[dpnp.newaxis, :]
expected_res = dpnp.broadcast_to(x2, (reps, reps))

res = dpnp.repeat(x2, reps, axis=0)
assert dpnp.all(res == expected_res)


def test_repeat_axes():
reps = 2
x = dpnp.reshape(dpnp.arange(5 * 10, dtype="i4"), (5, 10))
expected_res = dpnp.empty((x.shape[0] * 2, x.shape[1]), dtype=x.dtype)
expected_res[::2, :], expected_res[1::2] = x, x
res = dpnp.repeat(x, reps, axis=0)
assert dpnp.all(res == expected_res)

expected_res = dpnp.empty((x.shape[0], x.shape[1] * 2), dtype=x.dtype)
expected_res[:, ::2], expected_res[:, 1::2] = x, x
res = dpnp.repeat(x, reps, axis=1)
assert dpnp.all(res == expected_res)


def test_repeat_size_0_outputs():
x = dpnp.ones((3, 0, 5), dtype="i4")
reps = 10
res = dpnp.repeat(x, reps, axis=0)
assert res.size == 0
assert res.shape == (30, 0, 5)

res = dpnp.repeat(x, reps, axis=1)
assert res.size == 0
assert res.shape == (3, 0, 5)

res = dpnp.repeat(x, (2, 2, 2), axis=0)
assert res.size == 0
assert res.shape == (6, 0, 5)

x = dpnp.ones((3, 2, 5))
res = dpnp.repeat(x, 0, axis=1)
assert res.size == 0
assert res.shape == (3, 0, 5)

x = dpnp.ones((3, 2, 5))
res = dpnp.repeat(x, (0, 0), axis=1)
assert res.size == 0
assert res.shape == (3, 0, 5)


def test_repeat_strides():
reps = 2
x = dpnp.reshape(dpnp.arange(10 * 10, dtype="i4"), (10, 10))
x1 = x[:, ::-2]
expected_res = dpnp.empty((10, 10), dtype="i4")
expected_res[:, ::2], expected_res[:, 1::2] = x1, x1
res = dpnp.repeat(x1, reps, axis=1)
assert dpnp.all(res == expected_res)
res = dpnp.repeat(x1, (reps,) * x1.shape[1], axis=1)
assert dpnp.all(res == expected_res)

x1 = x[::-2, :]
expected_res = dpnp.empty((10, 10), dtype="i4")
expected_res[::2, :], expected_res[1::2, :] = x1, x1
res = dpnp.repeat(x1, reps, axis=0)
assert dpnp.all(res == expected_res)
res = dpnp.repeat(x1, (reps,) * x1.shape[0], axis=0)
assert dpnp.all(res == expected_res)


def test_repeat_casting():
x = dpnp.arange(5, dtype="i4")
# i4 is cast to i8
reps = dpnp.ones(5, dtype="i4")
res = dpnp.repeat(x, reps)
assert res.shape == x.shape
assert dpnp.all(res == x)


def test_repeat_strided_repeats():
x = dpnp.arange(5, dtype="i4")
reps = dpnp.ones(10, dtype="i8")
reps[::2] = 0
reps = reps[::-2]
res = dpnp.repeat(x, reps)
assert res.shape == x.shape
assert dpnp.all(res == x)
Loading
Loading