Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PReLU layer #85

Merged
merged 6 commits into from
Jun 9, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
/*
* Copyright 2020 JetBrains s.r.o. and Kotlin Deep Learning project contributors. All Rights Reserved.
* Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE.txt file.
*/

package org.jetbrains.kotlinx.dl.api.core.layer.activation

import org.jetbrains.kotlinx.dl.api.core.KGraph
import org.jetbrains.kotlinx.dl.api.core.initializer.Initializer
import org.jetbrains.kotlinx.dl.api.core.initializer.Zeros
import org.jetbrains.kotlinx.dl.api.core.regularizer.Regularizer
import org.jetbrains.kotlinx.dl.api.core.shape.numElements
import org.jetbrains.kotlinx.dl.api.core.shape.toLongArray
import org.jetbrains.kotlinx.dl.api.core.util.getDType
import org.tensorflow.Operand
import org.tensorflow.Shape
import org.tensorflow.op.Ops
import org.tensorflow.op.core.Variable

/**
* Parametric Rectified Linear Unit.
*
* It follows:
* ```
* f(x) = alpha * x if x < 0
* f(x) = x if x >= 0
* ```
* where `alpha` is a learnable weight and has the same shape as `x` (i.e. input).
*
* @property [alphaInitializer] Initializer instance for the weights.
* @property [alphaRegularizer] Regularizer instance for the weights.
* @property [sharedAxes] The axes along which to share learnable parameters.
*/
public class PReLU(
public val alphaInitializer: Initializer = Zeros(),
public val alphaRegularizer: Regularizer? = null,
public val sharedAxes: IntArray? = null,
name: String = ""
) : AbstractActivationLayer(name) {
/**
* TODO: support for constraint (alphaConstraint) should be added
*/

private lateinit var alphaShape: Shape
private lateinit var alpha: Variable<Float>
private val alphaVariableName = if (name.isNotEmpty()) name + "_" + "alpha" else "alpha"

override var weights: Map<String, Array<*>>
get() = extractWeights(listOf(alphaVariableName))
set(value) = assignWeights(value)
override val paramCount: Int
get() = alphaShape.numElements().toInt()

init {
isTrainable = true
}

override fun build(tf: Ops, kGraph: KGraph, inputShape: Shape) {
val alphaShapeArray = inputShape.toLongArray().drop(1).toLongArray()
if (sharedAxes != null) {
for (axis in sharedAxes) {
alphaShapeArray[axis - 1] = 1
}
}
alphaShape = Shape.make(alphaShapeArray[0], *alphaShapeArray.drop(1).toLongArray())

fanIn = inputShape.size(inputShape.numDimensions() - 1).toInt()
fanOut = fanIn

alpha = tf.withName(alphaVariableName).variable(alphaShape, getDType())
alpha = addWeight(tf, kGraph, alphaVariableName, alpha, alphaInitializer, alphaRegularizer)
}

override fun forward(tf: Ops, input: Operand<Float>): Operand<Float> {
// It's equivalent to: `-alpha * relu(-x) + relu(x)`
val positive = tf.nn.relu(input)
val negative = tf.math.mul(tf.math.neg(alpha), tf.nn.relu(tf.math.neg(input)))
return tf.math.add(positive, negative)
}

override fun toString(): String =
"PReLU(alphaInitializer=$alphaInitializer, alphaRegularizer=$alphaRegularizer, sharedAxes=$sharedAxes)"
}
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ internal const val LAYER_BATCH_NORM: String = "BatchNormalization"
internal const val LAYER_ACTIVATION: String = "Activation"
internal const val LAYER_RELU: String = "ReLU"
internal const val LAYER_ELU: String = "ELU"
internal const val LAYER_PRELU: String = "PReLU"
internal const val LAYER_LEAKY_RELU: String = "LeakyReLU"
internal const val LAYER_THRESHOLDED_RELU = "ThresholdedReLU"
internal const val LAYER_LSTM: String = "LSTM"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@ private fun convertToLayer(
LAYER_ACTIVATION -> createActivationLayer(kerasLayer.config!!, kerasLayer.config.name!!)
LAYER_RELU -> createReLULayer(kerasLayer.config!!, kerasLayer.config.name!!)
LAYER_ELU -> createELULayer(kerasLayer.config!!, kerasLayer.config.name!!)
LAYER_PRELU -> createPReLULayer(kerasLayer.config!!, kerasLayer.config.name!!)
LAYER_LEAKY_RELU -> createLeakyReLULayer(kerasLayer.config!!, kerasLayer.config.name!!)
LAYER_THRESHOLDED_RELU -> createThresholdedReLULayer(kerasLayer.config!!, kerasLayer.config.name!!)
LAYER_SOFTMAX -> createSoftmaxLayer(kerasLayer.config!!, kerasLayer.config.name!!)
Expand Down Expand Up @@ -390,6 +391,15 @@ private fun createELULayer(config: LayerConfig, name: String): Layer {
)
}

private fun createPReLULayer(config: LayerConfig, name: String): Layer {
return PReLU(
alphaInitializer = convertToInitializer(config.alpha_initializer!!),
alphaRegularizer = convertToRegularizer(config.alpha_regularizer),
sharedAxes = config.shared_axes!!.toIntArray(),
name = name
)
}

private fun createLeakyReLULayer(config: LayerConfig, name: String): Layer {
return LeakyReLU(
alpha = config.alpha!!.toFloat(),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ import org.jetbrains.kotlinx.dl.api.core.Sequential
import org.jetbrains.kotlinx.dl.api.core.activation.Activations
import org.jetbrains.kotlinx.dl.api.core.initializer.*
import org.jetbrains.kotlinx.dl.api.core.layer.Layer
import org.jetbrains.kotlinx.dl.api.core.layer.activation.PReLU
import org.jetbrains.kotlinx.dl.api.core.layer.activation.LeakyReLU
import org.jetbrains.kotlinx.dl.api.core.layer.activation.Softmax
import org.jetbrains.kotlinx.dl.api.core.layer.activation.ThresholdedReLU
Expand Down Expand Up @@ -84,6 +85,7 @@ private fun convertToKerasLayer(layer: Layer, isKerasFullyCompatible: Boolean, i
is Input -> createKerasInput(layer)
is BatchNorm -> createKerasBatchNorm(layer, isKerasFullyCompatible)
is ActivationLayer -> createKerasActivationLayer(layer)
is PReLU -> createKerasPReLULayer(layer, isKerasFullyCompatible)
is LeakyReLU -> createKerasLeakyReLU(layer)
is ThresholdedReLU -> createKerasThresholdedReLULayer(layer)
is Add -> createKerasAddLayer(layer)
Expand Down Expand Up @@ -200,6 +202,17 @@ private fun createKerasActivationLayer(layer: ActivationLayer): KerasLayer {
return KerasLayer(class_name = LAYER_ACTIVATION, config = configX)
}

private fun createKerasPReLULayer(layer: PReLU, isKerasFullyCompatible: Boolean): KerasLayer {
val configX = LayerConfig(
dtype = DATATYPE_FLOAT32,
alpha_initializer = convertToKerasInitializer(layer.alphaInitializer, isKerasFullyCompatible),
alpha_regularizer = convertToKerasRegularizer(layer.alphaRegularizer),
shared_axes = layer.sharedAxes?.toList(),
name = layer.name
)
return KerasLayer(class_name = LAYER_PRELU, config = configX)
}

private fun createKerasSoftmaxLayer(layer: Softmax): KerasLayer {
val configX = LayerConfig(
dtype = DATATYPE_FLOAT32,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@ internal data class LayerConfig(
@Json(serializeNull = false)
val alpha: Double? = null,
@Json(serializeNull = false)
val alpha_initializer: KerasInitializer? = null,
@Json(serializeNull = false)
val alpha_regularizer: KerasRegularizer? = null,
@Json(serializeNull = false)
val axis: Any? = null,
@Json(serializeNull = false)
var batch_input_shape: List<Int?>? = null,
Expand Down Expand Up @@ -119,6 +123,8 @@ internal data class LayerConfig(
@Json(serializeNull = false)
val scale: Any? = null,
@Json(serializeNull = false)
val shared_axes: List<Int>? = null,
@Json(serializeNull = false)
val sparse: Boolean? = null,
@Json(serializeNull = false)
val stateful: Boolean? = null,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
/*
* Copyright 2020 JetBrains s.r.o. and Kotlin Deep Learning project contributors. All Rights Reserved.
* Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE.txt file.
*/

package org.jetbrains.kotlinx.dl.api.core.layer

import org.jetbrains.kotlinx.dl.api.core.KGraph
import org.jetbrains.kotlinx.dl.api.core.activation.EPS
import org.jetbrains.kotlinx.dl.api.core.initializer.Constant
import org.jetbrains.kotlinx.dl.api.core.initializer.RandomUniform
import org.jetbrains.kotlinx.dl.api.core.layer.activation.PReLU
import org.jetbrains.kotlinx.dl.api.core.shape.shapeFromDims
import org.jetbrains.kotlinx.dl.api.core.shape.shapeOperand
import org.junit.jupiter.api.Assertions
import org.junit.jupiter.api.Test
import org.tensorflow.Graph
import org.tensorflow.Session
import org.tensorflow.Shape
import org.tensorflow.op.Ops

class PReLUTest : ActivationLayerTest() {
@Test
fun default() {
val input = arrayOf(
floatArrayOf(-3.0f, -1.0f, 0.0f, 2.0f),
floatArrayOf(2.5f, 1.0f, -5.0f, 4.2f),
)
val expected = arrayOf(
floatArrayOf(0.0f, 0.0f, 0.0f, 2.0f),
floatArrayOf(2.5f, 1.0f, 0.0f, 4.2f),
)
val layer = PReLU()

Graph().use { graph ->
Session(graph).use { session ->
val tf = Ops.create(graph)
KGraph(graph.toGraphDef()).use { kGraph ->
val inputShape = Shape.make(input.size.toLong(), input[0].size.toLong())
layer.build(tf, kGraph, inputShape)

val inputOp = tf.constant(input)
val isTraining = tf.constant(false)
val numberOfLosses = tf.constant(1.0f)
val output = layer.forward(tf, inputOp, isTraining, numberOfLosses).asOutput()
kGraph.initializeGraphVariables(session)
val outputTensor = session.runner().fetch(output).run().first()

// Check the output shape is correct.
val expectedShape = inputShape
val actualShape = shapeFromDims(*outputTensor.shape())
Assertions.assertEquals(expectedShape, actualShape)

// Check output is correct.
val actual = Array(input.size) { FloatArray(input[0].size) }
outputTensor.copyTo(actual)
for (i in actual.indices) {
Assertions.assertArrayEquals(
expected[i],
actual[i],
EPS
)
}
}
}
}
}

@Test
fun withInitializer() {
val input = arrayOf(
floatArrayOf(-3.0f, -1.0f, 0.0f, 2.0f),
floatArrayOf(2.5f, 1.0f, -5.0f, 4.2f),
)
val expected = arrayOf(
floatArrayOf(-6.0f, -2.0f, 0.0f, 2.0f),
floatArrayOf(2.5f, 1.0f, -10.0f, 4.2f),
)
val layer = PReLU(Constant(2.0f))

Graph().use { graph ->
Session(graph).use { session ->
val tf = Ops.create(graph)
KGraph(graph.toGraphDef()).use { kGraph ->
val inputShape = Shape.make(input.size.toLong(), input[0].size.toLong())
layer.build(tf, kGraph, inputShape)

val inputOp = tf.constant(input)
val isTraining = tf.constant(false)
val numberOfLosses = tf.constant(1.0f)
val output = layer.forward(tf, inputOp, isTraining, numberOfLosses).asOutput()
kGraph.initializeGraphVariables(session)
val outputTensor = session.runner().fetch(output).run().first()

// Check the output shape is correct.
val expectedShape = inputShape
val actualShape = shapeFromDims(*outputTensor.shape())
Assertions.assertEquals(expectedShape, actualShape)

// Check output is correct.
val actual = Array(input.size) { FloatArray(input[0].size) }
outputTensor.copyTo(actual)
for (i in actual.indices) {
Assertions.assertArrayEquals(
expected[i],
actual[i],
EPS
)
}
}
}
}
}

@Test
fun withSharedAxes() {
val input = arrayOf(
arrayOf(
floatArrayOf(-3.0f, -1.0f, 0.0f, 2.0f),
floatArrayOf(2.5f, 1.0f, -5.0f, 4.2f),
),
arrayOf(
floatArrayOf(2.0f, 0.5f, 1.0f, 4.0f),
floatArrayOf(-3.0f, -1.0f, 5.0f, -0.3f),
)
)
val initializerSeed = 42L
val layer = PReLU(RandomUniform(seed = initializerSeed), sharedAxes = intArrayOf(1))

Graph().use { graph ->
Session(graph).use { session ->
val tf = Ops.create(graph)
KGraph(graph.toGraphDef()).use { kGraph ->
val inputShape = Shape.make(
input.size.toLong(), input[0].size.toLong(), input[0][0].size.toLong()
)
layer.build(tf, kGraph, inputShape)

val inputOp = tf.constant(input)
val isTraining = tf.constant(false)
val numberOfLosses = tf.constant(1.0f)
val output = layer.forward(tf, inputOp, isTraining, numberOfLosses).asOutput()
kGraph.initializeGraphVariables(session)
val outputTensor = session.runner().fetch(output).run().first()

// Check the output shape is correct.
val expectedShape = inputShape
val actualShape = shapeFromDims(*outputTensor.shape())
Assertions.assertEquals(expectedShape, actualShape)

// TODO: find a better way to verify the output is correct.
// Check output is correct.
val alphaInitializer = RandomUniform(seed = initializerSeed)
val alphaTensor = session.runner().fetch(
alphaInitializer.initialize(
input[0][0].size,
input[0][0].size,
tf,
shapeOperand(tf, Shape.make(1, input[0][0].size.toLong())),
"temp_init"
).asOutput()
).run().first()
val alpha = Array(1) { FloatArray(input[0][0].size) }
alphaTensor.copyTo(alpha)

val actual = Array(input.size) {
Array(input[0].size) {
FloatArray(input[0][0].size)
}
}
outputTensor.copyTo(actual)
for (i in actual.indices) {
for (j in actual[i].indices) {
for (k in actual[i][j].indices) {
val it = input[i][j][k]
Assertions.assertEquals(
if ( it < 0) it * alpha[0][k] else it,
actual[i][j][k],
EPS
)
}
}
}
}
}
}
}
}