Sibaek Lee, Kyeongsu Gang, Seongbo Ha, Hyeonwoo Yu
We present the Bayesian Neural Radiance Field (NeRF), which explicitly quantifies uncertainty in geometric volume structures without the need for additional networks, making it adept for challenging observations and uncontrolled images.
The results have been adjusted to account for the uncertainty in (Far Left) Base, (Left-Center) Color, (Center) Density, (Right-Center) NeRF CF, (Far Right) Density and Color, and (Far Far Right) Occupancy.
cd Bayesian_NeRF
conda create --name bayesian_nerf python=3.8
conda activate bayesian_nerf
pip install -r requirements.txt
sudo apt-get update
sudo apt-get install -y libgl1-mesa-glx
sudo apt-get install -y libglib2.0-0
- Synthetic data (Blender) and real-world data (LLFF) : NeRF dataset.
- Modelnet Dataset : ModelNet dataset
Our proposed method excels in scenarios with limited data, hence we recommend downloading the dataset and appropriately processing it for experimentation.
cd NeRF
cd NeRF_for_rgb_img
cd NeRF_baseline
python run_nerf.py --config configs/synthetic.txt --expname ../../chair/4_baseline --datadir ../../data/nerf_synthetic/chair_4
cd ..
cd NeRF_color
python run_nerf.py --config configs/synthetic.txt --expname ../../chair/4_color --datadir ../../data/nerf_synthetic/chair_4
cd ..
cd NeRF_density
python run_nerf.py --config configs/synthetic.txt --expname ../../chair/4_density --datadir ../../data/nerf_synthetic/chair_4
cd ..
cd NeRF_CF
python run_nerf_uncertainty_NF.py --config configs/synthetic.txt --expname ../../chair/4_cf_nerf --datadir ../../data/nerf_synthetic/chair_4
cd ..
cd NeRF_density_and_color
python run_nerf.py --config configs/synthetic.txt --expname ../../chair/4_den_col --datadir ../../data/nerf_synthetic/chair_4
cd ..
cd NeRF_occupancy
python run_nerf.py --config configs/synthetic.txt --expname ../../chair/4_occupancy --datadir ../../data/nerf_synthetic/chair_4
cd ..
cd ..
- RGB img
cd NeRF_for_rgb_img
cd [Method Name]
python run_nerf.py --config configs/synthetic.txt --expname <Output Path> --datadir <Dataset Path>
cd ../..
- Depth img
cd NeRF_for_depth_img
python run_nerf_uncert_den.py --config configs/coarse.txt --expname <Output Path> --datadir <Dataset Path> # our density method
python run_nerf_uncert_occu.py --config configs/coarse.txt --expname <Output Path> --datadir <Dataset Path> # our occupancy method
python run_nerf_uncertainty_NF.py --config configs/coarse_CF.txt --expname <Output Path> --datadir <Dataset Path> # cf_nerf method
cd ../..
bash scripts/download_replica.sh # download replica dataset
bash scripts/download_tum.sh # download tum dataset
bash scripts/download_cull_replica_mesh.sh # for reconsturction evaluation
You can use data_delete_replica.py
and data_delete_tum.py
to retain only specific indices in the dataset.
# (Replica) Origianl method
python -W ignore run.py configs/Replica/room0.yaml
python src/tools/eval_recon.py --rec_mesh output/Replica/room0/mesh/final_mesh_eval_rec.ply --gt_mesh cull_replica_mesh/room0.ply -2d -3d -txt_name output/Replica/room0/result.txt
python src/tools/eval_ate.py configs/Replica/room0.yaml --txt_name output/Replica/room0/result.txt
# (Replica) Uncertainty method
python -W ignore run.py configs/Replica/room0_uncert.yaml --uncert
python src/tools/eval_recon.py --rec_mesh output/Replica/room0_uncert/mesh/final_mesh_eval_rec.ply --gt_mesh cull_replica_mesh/room0.ply -2d -3d -txt_name output/Replica/room0_uncert/result.txt
python src/tools/eval_ate.py configs/Replica/room0_uncert.yaml --txt_name output/Replica/room0_uncert/result.txt
# (TUM) Origianl method
python -W ignore run.py configs/TUM_RGBD/freiburg1_desk.yaml
python src/tools/eval_ate.py configs/TUM_RGBD/freiburg1_desk.yaml --txt_name output/TUM_RGBD/freiburg1_desk/result.txt
# (TUM) Uncertainty method
python -W ignore run.py configs/TUM_RGBD/freiburg1_desk_uncert.yaml --uncert
python src/tools/eval_ate.py configs/TUM_RGBD/freiburg1_desk_uncert.yaml --txt_name output/TUM_RGBD/freiburg1_desk_uncert/result.txt
This implementation is based on Vanila NeRF and NICE-SLAM.