Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hybrid tokenizers #25

Merged
merged 15 commits into from
Sep 25, 2024
117 changes: 16 additions & 101 deletions model2vec/distill/__main__.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,10 @@
import logging
from collections import Counter
from pathlib import Path
from typing import Annotated, Optional

import numpy as np
import typer
from huggingface_hub import model_info
from sklearn.decomposition import PCA
from tokenizers import Tokenizer

from model2vec.distill.inference import (
create_output_embeddings_from_model_name,
create_output_embeddings_from_model_name_and_tokens,
)
from model2vec.distill.tokenizer import create_tokenizer_from_vocab, remove_tokens
from model2vec.model import StaticModel
from model2vec.distill.distillation import distill
from model2vec.utils import setup_logging

logger = logging.getLogger(__name__)
Expand All @@ -33,104 +23,29 @@ def main(
),
] = None,
device: Annotated[str, typer.Option(help="The device to train the model on.")] = "cpu",
pca_dims: Annotated[
int | None, typer.Option(help="The PCA dimensionality to use. If this is None, no PCA is applied.")
] = 256,
apply_zipf: Annotated[bool, typer.Option(help="Whether to apply Zipf weighting.")] = True,
use_subword: Annotated[
bool, typer.Option(help="Whether to use subword tokenization. If this is False, you must pass a vocabulary.")
] = True,
) -> None:
"""Creates output embeddings for a sentencetransformer."""
if vocabulary_path is not None:
vocabulary = open(vocabulary_path).read().splitlines()
else:
vocabulary = None

model = distill(model_name, vocabulary, device)
model.save_pretrained(Path(save_path))


def distill(
model_name: str,
vocabulary: list[str] | None = None,
device: str = "cpu",
pca_dims: int | None = 256,
apply_zipf: bool = True,
) -> StaticModel:
"""
Distill down a sentencetransformer to a static model.

This function creates a set of embeddings from a sentencetransformer. It does this by doing either
a forward pass for all subword tokens in the tokenizer, or by doing a forward pass for all tokens in a passed vocabulary.

If you pass through a vocabulary, we create a custom word tokenizer for that vocabulary.
If you don't pass a vocabulary, we use the model's tokenizer directly.

:param model_name: The model name to use. Any sentencetransformer compatible model works.
:param vocabulary: The vocabulary to use. If this is None, we use the model's vocabulary.
:param device: The device to use.
:param pca_dims: The number of components to use for PCA. If this is None, we don't apply PCA.
:param apply_zipf: Whether to apply Zipf weighting to the embeddings.
:raises: ValueError if the PCA dimension is larger than the number of dimensions in the embeddings.
:raises: ValueError if the vocabulary contains duplicate tokens.
:return: A StaticModdel

"""
if vocabulary is None:
tokenizer: Tokenizer = Tokenizer.from_pretrained(model_name)
tokens, embeddings = create_output_embeddings_from_model_name(model_name, device=device)
tokenizer_name = model_name

wrong_tokens = [x for x in tokens if x.startswith("[unused")]
vocab = tokenizer.get_vocab()
wrong_token_ids = [vocab[token] for token in wrong_tokens]
tokenizer = remove_tokens(tokenizer, wrong_tokens)
embeddings = np.delete(embeddings, wrong_token_ids, axis=0)
logger.info("Removed unused tokens from the tokenizer and embeddings.")

else:
vocabulary_counts = Counter(vocabulary)
duplicates = [k for k, v in vocabulary_counts.items() if v > 1]
if duplicates:
duplicate_str = ", ".join(duplicates)
raise ValueError(f"Vocabulary contains duplicate tokens: {duplicate_str}")

if "[PAD]" not in vocabulary_counts:
vocabulary = ["[PAD]"] + vocabulary
if "[UNK]" not in vocabulary_counts:
vocabulary = ["[UNK]"] + vocabulary

tokens, embeddings = create_output_embeddings_from_model_name_and_tokens(
model_name=model_name,
tokens=vocabulary,
device=device,
output_value="token_embeddings",
include_eos_bos=False,
)
tokenizer_name = "word_level"
tokenizer = create_tokenizer_from_vocab(tokens, unk_token="[UNK]", pad_token="[PAD]")

if pca_dims is not None:
if pca_dims >= embeddings.shape[1]:
raise ValueError(
f"PCA dimension ({pca_dims}) is larger than the number of dimensions in the embeddings ({embeddings.shape[1]})"
)
if pca_dims >= len(tokens):
logger.warning(
f"PCA dimension ({pca_dims}) is larger than the number of tokens in the vocabulary ({len(tokens)}). Not applying PCA."
)
elif pca_dims < embeddings.shape[1]:
logger.info(f"Applying PCA with n_components {pca_dims}")

p = PCA(n_components=pca_dims, whiten=False)
embeddings = p.fit_transform(embeddings)

if apply_zipf:
logger.info("Applying Zipf weighting")
w = np.log(np.arange(1, len(embeddings) + 1))
embeddings *= w[:, None]

config = {"tokenizer_name": tokenizer_name, "apply_pca": pca_dims, "apply_zipf": apply_zipf}
# Get the language from the model card
info = model_info(model_name)
language = info.cardData.get("language")
return StaticModel(
vectors=embeddings, tokenizer=tokenizer, config=config, base_model_name=model_name, language=language
model = distill(
model_name=model_name,
vocabulary=vocabulary,
device=device,
pca_dims=pca_dims,
apply_zipf=apply_zipf,
use_subword=use_subword,
)
model.save_pretrained(Path(save_path))


if __name__ == "__main__":
Expand Down
167 changes: 167 additions & 0 deletions model2vec/distill/distillation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
import logging

import numpy as np
from huggingface_hub import model_info
from sklearn.decomposition import PCA
from tokenizers import Tokenizer

from model2vec.distill.inference import (
create_output_embeddings_from_model_name,
create_output_embeddings_from_model_name_and_tokens,
)
from model2vec.distill.tokenizer import add_tokens, preprocess_vocabulary, remove_tokens
from model2vec.model import StaticModel

logger = logging.getLogger(__name__)


def distill(
model_name: str,
vocabulary: list[str] | None = None,
device: str = "cpu",
pca_dims: int | None = 256,
apply_zipf: bool = True,
use_subword: bool = True,
) -> StaticModel:
"""
Distill a staticmodel from a sentence transformer.

This function creates a set of embeddings from a sentence transformer. It does this by doing either
a forward pass for all subword tokens in the tokenizer, or by doing a forward pass for all tokens in a passed vocabulary.

If you pass through a vocabulary, we create a custom word tokenizer for that vocabulary.
If you don't pass a vocabulary, we use the model's tokenizer directly.

:param model_name: The model name to use. Any sentencetransformer compatible model works.
:param vocabulary: The vocabulary to use. If this is None, we use the model's vocabulary.
:param device: The device to use.
:param pca_dims: The number of components to use for PCA. If this is None, we don't apply PCA.
:param apply_zipf: Whether to apply Zipf weighting to the embeddings.
:param use_subword: Whether to keep subword tokens in the vocabulary. If this is False, you must pass a vocabulary.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This also changes the actual tokenizer from subword to word level right? I would also specify that in the description

:raises: ValueError if the PCA dimension is larger than the number of dimensions in the embeddings.
:raises: ValueError if the vocabulary contains duplicate tokens.
:return: A StaticModdel
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
:return: A StaticModdel
:return: A StaticModel.


"""
if not use_subword and vocabulary is None:
raise ValueError(
"You must pass a vocabulary if you don't use subword tokens. Either pass a vocabulary, or set use_subword to True."
)

# Load original tokenizer. We need to keep this to tokenize any tokens in the vocabulary.
original_tokenizer: Tokenizer = Tokenizer.from_pretrained(model_name)
# Make a base list of tokens.
tokens: list[str] = []
if use_subword:
# Create the subword embeddings.
tokens, embeddings = create_output_embeddings_from_model_name(model_name, device=device)

# Remove any unused tokens from the tokenizer and embeddings.
wrong_tokens = [x for x in tokens if x.startswith("[unused")]
vocab = original_tokenizer.get_vocab()
# Get the ids of the unused token.
wrong_token_ids = [vocab[token] for token in wrong_tokens]
# Remove the unused tokens from the tokenizer.
new_tokenizer = remove_tokens(original_tokenizer, wrong_tokens)
# Remove the embeddings of the unused tokens.
embeddings = np.delete(embeddings, wrong_token_ids, axis=0)
logger.info(f"Removed {len(wrong_tokens)} unused tokens from the tokenizer and embeddings.")
else:
# We need to keep the unk token in the tokenizer.
unk_token = original_tokenizer.model.unk_token
# Remove all tokens except the UNK token.
new_tokenizer = remove_tokens(original_tokenizer, list(set(original_tokenizer.get_vocab()) - {unk_token}))
# We need to set embeddings to None because we don't know the dimensions of the embeddings yet.
embeddings = None

if vocabulary is not None:
# Preprocess the vocabulary with the original tokenizer.
preprocessed_vocabulary = preprocess_vocabulary(original_tokenizer, vocabulary)
n_tokens_before = len(preprocessed_vocabulary)
# Clean the vocabulary by removing duplicate tokens and tokens that are in the subword vocabulary.
cleaned_vocabulary = _clean_vocabulary(preprocessed_vocabulary, tokens)
n_tokens_after = len(cleaned_vocabulary)
logger.info(
f"Adding {n_tokens_after} tokens to the vocabulary. Removed {n_tokens_before - n_tokens_after} tokens during preprocessing."
)
# Only create embeddings if we have tokens to add.
if cleaned_vocabulary:
# Create the embeddings.
_, token_embeddings = create_output_embeddings_from_model_name_and_tokens(
model_name=model_name,
tokens=cleaned_vocabulary,
device=device,
output_value="token_embeddings",
include_eos_bos=False,
)

# If we don't have subword tokens, we still need to create
# some embeddings for [UNK] and some other special tokens.
if embeddings is None:
embeddings = np.zeros((new_tokenizer.get_vocab_size(), token_embeddings.shape[1]))
embeddings = np.concatenate([embeddings, token_embeddings], axis=0)
# Add the cleaned vocabulary to the tokenizer.
new_tokenizer = add_tokens(new_tokenizer, cleaned_vocabulary)
else:
logger.warning("Didn't create any token embeddings as all tokens were duplicates or empty.")

# Post process the embeddings by applying PCA and Zipf weighting.
embeddings = _post_process_embeddings(np.asarray(embeddings), pca_dims, apply_zipf)

config = {"tokenizer_name": model_name, "apply_pca": pca_dims, "apply_zipf": apply_zipf}
# Get the language from the model card
info = model_info(model_name)
language = info.cardData.get("language")

return StaticModel(
vectors=embeddings, tokenizer=new_tokenizer, config=config, base_model_name=model_name, language=language
)


def _post_process_embeddings(embeddings: np.ndarray, pca_dims: int | None, apply_zipf: bool) -> np.ndarray:
"""Post process embeddings by applying PCA and Zipf weighting."""
if pca_dims is not None:
if pca_dims >= embeddings.shape[1]:
raise ValueError(
f"PCA dimension ({pca_dims}) is larger than the number of dimensions in the embeddings ({embeddings.shape[1]})"
)
if pca_dims >= embeddings.shape[0]:
logger.warning(
f"PCA dimension ({pca_dims}) is larger than the number of tokens in the vocabulary ({embeddings.shape[0]}). Not applying PCA."
)
elif pca_dims < embeddings.shape[1]:
logger.info(f"Applying PCA with n_components {pca_dims}")

p = PCA(n_components=pca_dims, whiten=False)
embeddings = p.fit_transform(embeddings)

if apply_zipf:
logger.info("Applying Zipf weighting")
embeddings *= np.log(1 + np.arange(embeddings.shape[0]))[:, None]

return embeddings


def _clean_vocabulary(preprocessed_vocabulary: list[str], added_tokens: list[str]) -> list[str]:
"""Cleans a vocabulary by removing duplicates and tokens that were already in the vocabulary."""
added_tokens_set = set(added_tokens)
seen_tokens = set()
cleaned_vocabulary = []
n_empty = 0
n_duplicates = 0
for token in preprocessed_vocabulary:
if not token:
n_empty += 1
continue
if token in seen_tokens or token in added_tokens_set:
n_duplicates += 1
continue
seen_tokens.add(token)
cleaned_vocabulary.append(token)

if n_duplicates:
logger.warning(f"Removed {n_duplicates} duplicate tokens.")
if n_empty:
logger.warning(f"Removed {n_empty} empty tokens.")

return cleaned_vocabulary
Loading