-
Notifications
You must be signed in to change notification settings - Fork 88
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #304 from amwi04/multi-gpu
multi gpu example
- Loading branch information
Showing
2 changed files
with
137 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. ALL RIGHTS RESERVED. | ||
# | ||
# SPDX-License-Identifier: LicenseRef-NVIDIA-SOFTWARE-LICENSE | ||
|
||
import sys | ||
|
||
import cupy as cp | ||
|
||
from cuda.core.experimental import Device, LaunchConfig, Program, launch, system | ||
|
||
if system.num_devices < 2: | ||
print("this example requires at least 2 GPUs", file=sys.stderr) | ||
sys.exit(0) | ||
|
||
dtype = cp.float32 | ||
size = 50000 | ||
|
||
# Set GPU 0 | ||
dev0 = Device(0) | ||
dev0.set_current() | ||
stream0 = dev0.create_stream() | ||
|
||
# Compile a kernel targeting GPU 0 to compute c = a + b | ||
code_add = """ | ||
extern "C" | ||
__global__ void vector_add(const float* A, | ||
const float* B, | ||
float* C, | ||
size_t N) { | ||
const unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x; | ||
for (size_t i=tid; i<N; i+=gridDim.x*blockDim.x) { | ||
C[tid] = A[tid] + B[tid]; | ||
} | ||
} | ||
""" | ||
arch0 = "".join(f"{i}" for i in dev0.compute_capability) | ||
prog_add = Program(code_add, code_type="c++") | ||
mod_add = prog_add.compile( | ||
"cubin", | ||
options=( | ||
"-std=c++17", | ||
"-arch=sm_" + arch0, | ||
), | ||
) | ||
ker_add = mod_add.get_kernel("vector_add") | ||
|
||
# Set GPU 1 | ||
dev1 = Device(1) | ||
dev1.set_current() | ||
stream1 = dev1.create_stream() | ||
|
||
# Compile a kernel targeting GPU 1 to compute c = a - b | ||
code_sub = """ | ||
extern "C" | ||
__global__ void vector_sub(const float* A, | ||
const float* B, | ||
float* C, | ||
size_t N) { | ||
const unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x; | ||
for (size_t i=tid; i<N; i+=gridDim.x*blockDim.x) { | ||
C[tid] = A[tid] - B[tid]; | ||
} | ||
} | ||
""" | ||
arch1 = "".join(f"{i}" for i in dev1.compute_capability) | ||
prog_sub = Program(code_sub, code_type="c++") | ||
mod_sub = prog_sub.compile( | ||
"cubin", | ||
options=( | ||
"-std=c++17", | ||
"-arch=sm_" + arch1, | ||
), | ||
) | ||
ker_sub = mod_sub.get_kernel("vector_sub") | ||
|
||
|
||
# This adaptor ensures that any foreign stream (ex: from CuPy) that have not | ||
# yet supported the __cuda_stream__ protocol can still be recognized by | ||
# cuda.core. | ||
class StreamAdaptor: | ||
def __init__(self, obj): | ||
self.obj = obj | ||
|
||
@property | ||
def __cuda_stream__(self): | ||
# Note: CuPy streams have a .ptr attribute | ||
return (0, self.obj.ptr) | ||
|
||
|
||
# Create launch configs for each kernel that will be executed on the respective | ||
# CUDA streams. | ||
block = 256 | ||
grid = (size + block - 1) // block | ||
config0 = LaunchConfig(grid=grid, block=block, stream=stream0) | ||
config1 = LaunchConfig(grid=grid, block=block, stream=stream1) | ||
|
||
# Allocate memory on GPU 0 | ||
# Note: This runs on CuPy's current stream for GPU 0 | ||
dev0.set_current() | ||
a = cp.random.random(size, dtype=dtype) | ||
b = cp.random.random(size, dtype=dtype) | ||
c = cp.empty_like(a) | ||
cp_stream0 = StreamAdaptor(cp.cuda.get_current_stream()) | ||
|
||
# Establish a stream order to ensure that memory has been initialized before | ||
# accessed by the kernel. | ||
stream0.wait(cp_stream0) | ||
|
||
# Launch the add kernel on GPU 0 / stream 0 | ||
launch(ker_add, config0, a.data.ptr, b.data.ptr, c.data.ptr, cp.uint64(size)) | ||
|
||
# Allocate memory on GPU 1 | ||
# Note: This runs on CuPy's current stream for GPU 1. | ||
dev1.set_current() | ||
x = cp.random.random(size, dtype=dtype) | ||
y = cp.random.random(size, dtype=dtype) | ||
z = cp.empty_like(a) | ||
cp_stream1 = StreamAdaptor(cp.cuda.get_current_stream()) | ||
|
||
# Establish a stream order | ||
stream1.wait(cp_stream1) | ||
|
||
# Launch the subtract kernel on GPU 1 / stream 1 | ||
launch(ker_sub, config1, x.data.ptr, y.data.ptr, z.data.ptr, cp.uint64(size)) | ||
|
||
# Synchronize both GPUs are validate the results | ||
dev0.set_current() | ||
stream0.sync() | ||
assert cp.allclose(c, a + b) | ||
dev1.set_current() | ||
stream1.sync() | ||
assert cp.allclose(z, x - y) | ||
|
||
print("done") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters