FedFomo client-to-client weights over time (lighter -> higher weight). FedFomo discovers clients with the same underlying data distribution, assigning higher weights between clients with the same local data distributions (neighboring rows), without directly exposing local data to the server or other clients.
Personalized Federated Learning with First Order Model Optimization
Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, Jose M. Alvarez
ICLR 2021
This repository contains training & evaluation code for Federated First Order Model Optimization (FedFOMO), our personalized federated learning algorithm introduced in Personalized Federated Learning with First Order Model Optimization.
We include a requirements.txt
file for installing dependencies with pip install -r requirements.txt
. List of installable dependencies:
- pytorch
- torchvision
- numpy
- tqdm
- scikit-learn
- pandas
- matplotlib
Before running the below commands, please create the following directories with mkdir data logs models precomputed results
.
We include code to run experiments on CIFAR-10 and CIFAR-100 as in the paper. Please see the following commands below. Details for each argument are included in ./federated/args.py
.
For FedFomo (5 and 10 models)
# 5 models
python main.py --dataset cifar10 --max_epoch 20 --federation_epoch 5 --federation_method fomo --num_update_clients 4 --num_distributions 5 --num_clients 15 --client_weight_method e_greedy --client_weight_epsilon 0.3 --client_weight_epsilon_decay 0.05 --leave_one_out --model_weight_delta 1 -r 0 --momentum 0.0 --bs_trn 50 --bs_val 50 --lr 0.1 --learning_rate_decay 0.99 --optimizer sgd -elfs 0 --seed 0 --data_seed 0 -nlvp 0. -lvr 1. --baseline_model first_model --arch tf_cnn --softmax_client_weights --train_split 0.8 -fr 1.0 -nf 5 --device 0
# 10 models
python main.py --dataset cifar10 --max_epoch 20 --federation_epoch 5 --federation_method fomo --num_update_clients 9 --num_distributions 5 --num_clients 15 --client_weight_method e_greedy --client_weight_epsilon 0.3 --client_weight_epsilon_decay 0.05 --leave_one_out --model_weight_delta 1 -r 0 --momentum 0.0 --bs_trn 50 --bs_val 50 --lr 0.1 --learning_rate_decay 0.99 --optimizer sgd -elfs 0 --seed 0 --data_seed 0 -nlvp 0. -lvr 1. --baseline_model first_model --arch tf_cnn --softmax_client_weights --train_split 0.8 -fr 1.0 -nf 5 --device 0
For FedAvg:
python main.py --dataset cifar10 --max_epoch 20 --federation_epoch 5 --federation_method fedavg --federated_averaging --num_update_clients 4 --num_distributions 5 --num_clients 15 --client_weight_method e_greedy --client_weight_epsilon 0.3 --client_weight_epsilon_decay 0.05 --leave_one_out --model_weight_delta 1 -r 0 --momentum 0.0 --bs_trn 50 --bs_val 50 --lr 0.1 --learning_rate_decay 0.99 --optimizer sgd -elfs 0 --seed 0 --data_seed 0 -nlvp 0. -lvr 1. --baseline_model first_model --arch tf_cnn --softmax_client_weights --train_split 0.8 -fr 1.0 -nf 5 --device 0
For Local training:
python main.py --dataset cifar10 --max_epoch 20 --federation_epoch 5 --federation_method local --num_update_clients 4 --num_distributions 5 --num_clients 15 --client_weight_method e_greedy --client_weight_epsilon 0.3 --client_weight_epsilon_decay 0.05 --leave_one_out --model_weight_delta 1 -r 0 --momentum 0.0 --bs_trn 50 --bs_val 50 --lr 0.1 --learning_rate_decay 0.99 --optimizer sgd -elfs 0 --seed 0 --data_seed 0 -nlvp 0. -lvr 1. --baseline_model first_model --arch tf_cnn --softmax_client_weights --train_split 0.8 -fr 1.0 -nf 5 --device 0
@article{zhang2020personalized,
title={Personalized federated learning with first order model optimization},
author={Zhang, Michael and Sapra, Karan and Fidler, Sanja and Yeung, Serena and Alvarez, Jose M},
journal={arXiv preprint arXiv:2012.08565},
year={2020}
}