Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
arash-vahdat committed Sep 3, 2020
1 parent ddea06d commit feb9937
Show file tree
Hide file tree
Showing 26 changed files with 3,973 additions and 0 deletions.
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
visualizations/
.idea/
.run/
*.pyc
*.pdf
261 changes: 261 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
# The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" [(Paper)](https://arxiv.org/abs/2007.03898)

<div align="center">
<a href="http://latentspace.cc/arash_vahdat/" target="_blank">Arash&nbsp;Vahdat</a> &emsp; <b>&middot;</b> &emsp;
<a href="http://jankautz.com/" target="_blank">Jan&nbsp;Kautz</a>
</div>
<br>
<br>

[NVAE](https://arxiv.org/abs/2007.03898) is a deep hierarchical variational autoencoder that enables training SOTA
likelihood-based generative models on several image datasets.

<p align="center">
<img src="scripts/celebahq.png" width="800">
</p>

## Requirements
NVAE is built in Python 3.7 using PyTorch 1.6.0. Use the following command to install the requirements:
```
pip install -r requirements.txt
```

## Set up file paths and data
We have examined NVAE on several datasets. For large datasets, we store the data in LMDB datasets
for I/O efficiency. Click below on each dataset to see how you can prepare your data. Below, `$DATA_DIR` indicates
the path to a data directory that will contain all the datasets and `$CODE_DIR` refers to the code directory:

<details><summary>MNIST and CIFAR-10</summary>

These datasets will be downloaded automatically, when you run the main training for NVAE using `train.py`
for the first time. You can use `--data=$DATA_DIR/mnist` or `--data=$DATA_DIR/cifar10`, so that the datasets
are downloaded to the corresponding directories.
</details>

<details><summary>CelebA 64</summary>
Run the following commands to download the CelebA images and store them in an LMDB dataset:

```shell script
cd $CODE_DIR/scripts
python create_celeba64_lmdb.py --split train --img_path $DATA_DIR/celeba_org --lmdb_path $DATA_DIR/celeba64_lmdb
python create_celeba64_lmdb.py --split valid --img_path $DATA_DIR/celeba_org --lmdb_path $DATA_DIR/celeba64_lmdb
python create_celeba64_lmdb.py --split test --img_path $DATA_DIR/celeba_org --lmdb_path $DATA_DIR/celeba64_lmdb
```
Above, the images will be downloaded to `$DATA_DIR/celeba_org` automatically and then then LMDB datasets are created
at `$DATA_DIR/celeba64_lmdb`.
</details>

<details><summary>ImageNet 32x32</summary>

Run the following commands to download tfrecord files from [GLOW](https://github.com/openai/glow) and to convert them
to LMDB datasets
```shell script
mkdir -p $DATA_DIR/imagenet-oord
cd $DATA_DIR/imagenet-oord
wget https://storage.googleapis.com/glow-demo/data/imagenet-oord-tfr.tar
tar -xvf imagenet-oord-tfr.tar
cd $CODE_DIR/scripts
python convert_tfrecord_to_lmdb.py --dataset=imagenet-oord_32 --tfr_path=$DATA_DIR/imagenet-oord/mnt/host/imagenet-oord-tfr --lmdb_path=$DATA_DIR/imagenet-oord/imagenet-oord-lmdb_32 --split=train
python convert_tfrecord_to_lmdb.py --dataset=imagenet-oord_32 --tfr_path=$DATA_DIR/imagenet-oord/mnt/host/imagenet-oord-tfr --lmdb_path=$DATA_DIR/imagenet-oord/imagenet-oord-lmdb_32 --split=validation
```
</details>

<details><summary>CelebA HQ 256</summary>

Run the following commands to download tfrecord files from [GLOW](https://github.com/openai/glow) and to convert them
to LMDB datasets
```shell script
mkdir -p $DATA_DIR/celeba
cd $DATA_DIR/celeba
wget https://storage.googleapis.com/glow-demo/data/celeba-tfr.tar
tar -xvf celeba-tfr.tar
cd $CODE_DIR/scripts
python convert_tfrecord_to_lmdb.py --dataset=celeba --tfr_path=$DATA_DIR/celeba/celeba-tfr --lmdb_path=$DATA_DIR/celeba/celeba-lmdb --split=train
python convert_tfrecord_to_lmdb.py --dataset=celeba --tfr_path=$DATA_DIR/celeba/celeba-tfr --lmdb_path=$DATA_DIR/celeba/celeba-lmdb --split=validation
```
</details>


<details><summary>FFHQ 256</summary>

Visit [this Google drive location](https://drive.google.com/drive/folders/1WocxvZ4GEZ1DI8dOz30aSj2zT6pkATYS) and download
`images1024x1024.zip`. Run the following commands to unzip the images and to store them in LMDB datasets:
```shell script
mkdir -p $DATA_DIR/ffhq
unzip images1024x1024.zip -d $DATA_DIR/ffhq/
cd $CODE_DIR/scripts
python create_ffhq_lmdb.py --ffhq_img_path=$DATA_DIR/ffhq/images1024x1024/ --ffhq_lmdb_path=$DATA_DIR/ffhq/ffhq-lmdb --split=train
python create_ffhq_lmdb.py --ffhq_img_path=$DATA_DIR/ffhq/images1024x1024/ --ffhq_lmdb_path=$DATA_DIR/ffhq/ffhq-lmdb --split=validation
```
</details>


## Running the main NVAE training and evaluation scripts
We use the following commands on each dataset for training NVAEs on each dataset for
Table 1 in the [paper](https://arxiv.org/pdf/2007.03898.pdf). In all the datasets but MNIST
normalizing flows are enabled. Check Table 6 in the paper for more information on training
details:

<details><summary>MNIST</summary>

Two V100 GPUs are used for training NVAE on dynamically binarized MNIST. Training takes about 21 hours.

```shell script
export EXPR_ID=UNIQUE_EXPR_ID
export DATA_DIR=PATH_TO_DATA_DIR
export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR
export CODE_DIR=PATH_TO_CODE_DIR
cd $CODE_DIR
python train.py --data $DATA_DIR/mnist --root $CHECKPOINT_DIR --save $EXPR_ID --dataset mnist --batch_size 200 \
--epochs 400 --num_latent_scales 2 --num_groups_per_scale 10 --num_postprocess_cells 3 --num_preprocess_cells 3 \
--num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_latent_per_group 20 --num_preprocess_blocks 2 \
--num_postprocess_blocks 2 --weight_decay_norm 1e-2 --num_channels_enc 32 --num_channels_dec 32 --num_nf 0 \
--ada_groups --num_process_per_node 2 --use_se --res_dist --fast_adamax
```
</details>

<details><summary>CIFAR-10</summary>

Eight V100 GPUs are used for training NVAE on CIFAR-10. Training takes about 55 hours.

```shell script
export EXPR_ID=UNIQUE_EXPR_ID
export DATA_DIR=PATH_TO_DATA_DIR
export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR
export CODE_DIR=PATH_TO_CODE_DIR
cd $CODE_DIR
python train.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save --save $EXPR_ID --dataset cifar10 \
--num_channels_enc 128 --num_channels_dec 128 --epochs 400 --num_postprocess_cells 2 --num_preprocess_cells 2 \
--num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
--num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 30 --batch_size 32 \
--weight_decay_norm 1e-2 --num_nf 1 --num_process_per_node 8 --use_se --res_dist --fast_adamax
```
</details>

<details><summary>CelebA 64</summary>

Eight V100 GPUs are used for training NVAE on CelebA 64. Training takes about 92 hours.

```shell script
export EXPR_ID=UNIQUE_EXPR_ID
export DATA_DIR=PATH_TO_DATA_DIR
export CHECKPOINT_DIR=PATH_TO_CHECKPOINT_DIR
export CODE_DIR=PATH_TO_CODE_DIR
cd $CODE_DIR
python train.py --data $DATA_DIR/celeba64_lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_64 \
--num_channels_enc 64 --num_channels_dec 64 --epochs 90 --num_postprocess_cells 2 --num_preprocess_cells 2 \
--num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
--num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 20 \
--batch_size 16 --num_nf 1 --ada_groups --num_process_per_node 8 --use_se --res_dist --fast_adamax
```
</details>

<details><summary>ImageNet 32x32</summary>

Coming Soon.

</details>

<details><summary>CelebA HQ 256</summary>

Coming Soon.

</details>

<details><summary>FFHQ 256</summary>

Coming Soon.

</details>

**If for any reason the training is stopped, use the exactly same commend with the addition of `--cont_training`
to continue training from the last saved checkpoint.**

## Monitoring the training progress
While running any of the commands above, you can monitor the training progress using Tensorboard:

<details><summary>Click here</summary>

```shell script
tensorboard --logdir $CHECKPOINT_DIR/eval-$EXPR_ID/
```
Above, `$CHECKPOINT_DIR` and `$EXPR_ID` are the same variables used for running the main training script.

</details>

## Post-training sampling and evaluation

<details><summary>Evaluation</summary>

You can use the following command to load a trained model and evaluate it on the test datasets:

```shell script
cd $CODE_DIR
python evaluate.py --checkpoint $CHECKPOINT_DIR/eval-$EXPR_ID/checkpoint.pt --data $DATA_DIR/mnist --eval_mode=evaluate --num_iw_samples=1000
```
Above, `--num_iw_samples` indicates the number of importance weighted samples used in evaluation.
`$CHECKPOINT_DIR` and `$EXPR_ID` are the same variables used for running the main training script.
Set `--data` to the same argument that was used when training NVAE (our example is for MNIST).

</details>

<details><summary>Sampling</summary>

You can also use the following command to generate samples from a trained model:

```shell script
cd $CODE_DIR
python evaluate.py --checkpoint $CHECKPOINT_DIR/eval-$EXPR_ID/checkpoint.pt --eval_mode=sample --temp=0.6 --readjust_bn
```
where `--temp` sets the temperature used for sampling and `--readjust_bn` enables readjustment of the BN statistics
as described in the paper. If you remove `--readjust_bn`, the sampling will proceed with BN layer in the eval mode
(i.e., BN layers will use running mean and variances extracted during training).

</details>

## How to construct smaller NVAE models
In the commands above, we are constructing big NVAE models that require several days of training
in most cases. If you'd like to construct smaller NVAEs, you can use these tricks:

* Reduce the network width: `--num_channels_enc` and `--num_channels_dec` are controlling the number
of initial channels in the bottom-up and top-down networks respectively. Recall that we halve the
number of channels with every spatial downsampling layer in the bottom-up network, and we double the number of
channels with every upsampling layer in the top-down network. By reducing
`--num_channels_enc` and `--num_channels_dec`, you can reduce the overall width of the networks.

* Reduce the number of residual cells in the hierarchy: `--num_cell_per_cond_enc` and
`--num_cell_per_cond_dec` control the number of residual cells used between every latent variable
group in the bottom-up and top-down networks respectively. In most of our experiments, we are using
two cells per group for both networks. You can reduce the number of residual cells to one to make the model
smaller.

* Reduce the number of epochs: You can reduce the training time by reducing `--epochs`.

* Reduce the number of groups: You can make NVAE smaller by using a smaller number of latent variable groups.
We use two schemes for setting the number of groups:
1. An equal number of groups: This is set by `--num_groups_per_scale` which indicates the number of groups
in each scale of latent variables. Reduce this number to have a small NVAE.

2. An adaptive number of groups: This is enabled by `--ada_groups`. In this case, the highest
resolution of latent variables will have `--num_groups_per_scale` groups and
the smaller scales will get half the number of groups successively (see groups_per_scale in utils.py).
We don't let the number of groups go below `--min_groups_per_scale`. You can reduce
the total number of groups by reducing `--num_groups_per_scale` and `--min_groups_per_scale`
when `--ada_groups` is enabled.

## License
Please check the LICENSE file. NVAE may be used non-commercially, meaning for research or
evaluation purposes only. For business inquiries, please contact
[researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com).

## Bibtex:
Please cite our paper, if you happen to use this codebase:

```
@article{vahdat2020NVAE,
title={{NVAE}: A Deep Hierarchical Variational Autoencoder},
author={Vahdat, Arash and Kautz, Jan},
journal={arXiv preprint arXiv:2007.03898},
year={2020}
}
```
Loading

0 comments on commit feb9937

Please sign in to comment.