Skip to content

NVlabs/fova-depth

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

FoVA-Depth

This is the official code release for the paper
Daniel Lichy, Hang Su, Abhishek Badki, Jan Kautz, and Orazio Gallo, FoVA-Depth: Field-of-View Agnostic Depth Estimation for Cross-Dataset Generalization, 3DV 2024.

Please check out the project page: https://research.nvidia.com/labs/lpr/fova-depth/

πŸ‘‰ πŸ‘‰ Also take a look at nvTorchCam, which implements plane-sweep volumes (PSV) and related concepts, such as sphere-sweep volumes or epipolar attention, in a way that is agnostic to the camera projection model (e.g., pinhole or fisheye).

Table of Contents

  1. Installation
  2. Downloading Pretrained Checkpoints
  3. Downloading Datasets
  4. Running
  5. Testing New Datasets
  6. Citation

Installation

This project depends on Pytorch, Pytorch-Lightning, and our library nvTorchCam.

To clone the nvTorchCam submodule, use the --recurse-submodules option when cloning this repo.

To install in a virtual environment run:

python3.10 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Install nvdiffrast, though this is only strictly needed to interpolate when using cube maps.

Download Pretrained Checkpoints

Download the pretrained checkpoints from here and place them in the checkpoints folder. They should be:

checkpoints
β”œβ”€β”€ cube_ddad_2image.ckpt
β”œβ”€β”€ cube_ddad_3image.ckpt
β”œβ”€β”€ cube_scannet.ckpt
β”œβ”€β”€ erp_ddad_2image.ckpt
β”œβ”€β”€ erp_ddad_3image.ckpt
└── erp_scannet.ckpt

Downloading Datasets

Our models are trained on two pinhole datasets, Scannet (indoor) and DDAD (driving), and tested on the Equirectangular (ERP) dataset Matterport360 (indoor) and the fisheye dataset KITTI360 (driving). Below, we provide instructions for downloading these datasets.

Scannet

Due to the unavailability of the original Scannet dataset version used in our work (prepared by the authors of Normal-Assisted-Stereo), we recommend following the alternative setup provided in this repository. This setup closely mimics the structure required by Normal-Assisted-Stereo.

Additionally, you will need to download new_orders and train-test splits from Normal-Assisted-Stereo, which we provide here.

After unzipping, the folder structure should look as follows:

scannet  
β”‚  
β”œβ”€β”€ train  
β”œβ”€β”€ val  
└── new_orders  
    β”œβ”€β”€ train  
    └── test  

DDAD

Download the DDAD dataset (train+val 257GB) from here https://github.com/TRI-ML/DDAD. Install the TRI Dataset Governance Policy (DGP) codebase as explained on the same page.

Then export the depth maps and resize the images by running the following script from the root of this repository:

python data_processing/resize_ddad.py --ddad_path path_to_ddad --resized_ddad_path output_path_to_store_resized_data

This make take several hours.

Once prepared the folder structure should look as follows:

ddad_resize  
β”œβ”€β”€ 000000  
    β”œβ”€β”€ calibration  
    β”œβ”€β”€ depth  
    β”œβ”€β”€ rgb  
    └── scene_*.json  
β”œβ”€β”€ 000001  
β”œβ”€β”€ ...
└── 000199

Matterport 360

Matterport360 can be download from here: https://researchdata.bath.ac.uk/1126/ as seven .zip files.

Once prepared the folder structure should look as follows:

data  
β”œβ”€β”€  1LXtFkjw3qL  
β”œβ”€β”€  1pXnuDYAj8r  
└── ...

KITTI360

Kitti360 can be downloaded here: https://www.cvlibs.net/datasets/kitti-360/ You will need the fisheye images, Calibrations, and Vehicle poses. After extracting it should look as follows:

KITTI-360  
β”œβ”€β”€ calibration  
    β”œβ”€β”€  <drive_name>  
        β”œβ”€β”€ image_02  
        └── image_03  
β”œβ”€β”€ data_2d_raw  
    └── calib_cam_to_pose.txt  
β”œβ”€β”€ data_poses  
    β”œβ”€β”€  <drive_name>  
        β”œβ”€β”€ cam0_to_world.txt  
        └── poses.txt  

Where <drive_name> will be something like 2013_05_28_drive_0007_sync for example.

Running the Code

This project is based on Pytorch-Lighting and is thus highly configurable from the command-line. For all the following commands you can append --print_config to print all configurable options. These options can be overridden from the command-line or with a .yaml configuration file. See Pytorch-Lightings docs for more details.

Evaluation

Here we list the commands for testing our pretrained models on Matterport360 and KITTI360.

  • ERP model on Matterport360
python train.py test --data configs/data_configs/matterport360.yaml --model configs/fova_depth_erp.yaml --model.init_args.network.init_args.warp_to_original_cam True --trainer.default_root_dir test_logs/matterport360_erp --model.init_args.load_state_dict checkpoints/erp_scannet.ckpt --data.init_args.test_datasets.init_args.dataset_path <path_to_matterport360_dataset>
  • Cube model on Matterport360
python train.py test --data configs/data_configs/matterport360.yaml --model configs/fova_depth_cube.yaml --model.init_args.network.init_args.warp_to_original_cam True --trainer.default_root_dir test_logs/matterport360_cube --model.init_args.load_state_dict checkpoints/cube_scannet.ckpt --data.init_args.test_datasets.init_args.dataset_path <path_to_matterport360_dataset>
  • 2-image ERP model on KITTI360
python train.py test --data configs/data_configs/kitti360.yaml --model configs/fova_depth_erp_highres.yaml --model.init_args.load_state_dict checkpoints/erp_ddad_2image.ckpt --trainer.default_root_dir test_logs/kitti360_erp --data.init_args.test_datasets.init_args.dataset_path <path_to_kitti360_dataset> --data.init_args.test_datasets.init_args.scene_name <kitti360_scene_name>

This saves the data in the canonical representation. It is possible to warp the depth back to the original fisheye representation by adding the following arguments: --model.init_args.network.init_args.warp_to_original_cam True and --trainer.inference_mode False. However these will slow down inference due to iterative undistortion.

  • 2-image Cubemap model on KITTI360
python train.py test --data configs/data_configs/kitti360.yaml --model configs/fova_depth_cube_highres.yaml --model.init_args.load_state_dict checkpoints/cube_ddad_2image.ckpt --trainer.default_root_dir test_logs/kitti360_cube --data.init_args.test_datasets.init_args.dataset_path <path_to_kitti360_dataset> --data.init_args.test_datasets.init_args.scene_name <kitti360_scene_name>
  • 3-image ERP model on KITTI360
python train.py test --data configs/data_configs/kitti360_3image.yaml --model configs/fova_depth_erp_highres.yaml --model.init_args.load_state_dict checkpoints/erp_ddad_3image.ckpt --trainer.default_root_dir test_logs/kitti360_erp_3image --data.init_args.test_datasets.init_args.dataset_path <path_to_kitti360_dataset> --data.init_args.test_datasets.init_args.scene_name <kitti360_scene_name>
  • 3-image Cube model on KITTI360
python train.py test --data configs/data_configs/kitti360_3image.yaml --model configs/fova_depth_cube_highres.yaml --model.init_args.load_state_dict checkpoints/cube_ddad_3image.ckpt --trainer.default_root_dir test_logs/kitti360_cube_3image --data.init_args.test_datasets.init_args.dataset_path <path_to_kitti360_dataset> --data.init_args.test_datasets.init_args.scene_name <kitti360_scene_name>

Training

All models were trained on 8 NVIDIA V100 GPUs with 32GB of memory. Batch-sizes and learning rates may need to be adjusted when training on different hardware. Here are the commands to train the models.

  • ERP model on ScanNet
python train.py fit --data configs/data_configs/scannet.yaml --model configs/fova_depth_erp.yaml --trainer configs/default_trainer.yaml --trainer.default_root_dir train_logs/erp_scannet --data.init_args.train_dataset.init_args.dataset_path <path_to_scannet_dataset> --data.init_args.val_datasets.init_args.dataset_path <path_to_scannet_dataset>
  • Cube model on ScanNet
python train.py fit --data configs/data_configs/scannet.yaml --model configs/fova_depth_cube.yaml --trainer configs/default_trainer.yaml --trainer.default_root_dir train_logs/cube_scannet --data.init_args.train_dataset.init_args.dataset_path <path_to_scannet_dataset> --data.init_args.val_datasets.init_args.dataset_path <path_to_scannet_dataset>
  • ERP model on DDAD (2 input images)
python train.py fit --data configs/data_configs/ddad.yaml --model configs/fova_depth_erp_highres.yaml --trainer configs/default_trainer.yaml --trainer.default_root_dir train_logs/erp_ddad --model.init_args.load_state_dict checkpoints/erp_scannet.ckpt --trainer.max_epochs 40 --data.init_args.train_dataset.init_args.dataset_path <path_to_ddad_dataset> --data.init_args.val_datasets.init_args.dataset_path <path_to_ddad_dataset>
  • Cube model on DDAD (2 input images)
python train.py fit --data configs/data_configs/ddad.yaml --model configs/fova_depth_cube_highres.yaml --trainer configs/default_trainer.yaml --trainer.default_root_dir train_logs/cube_ddad --model.init_args.load_state_dict checkpoints/cube_scannet.ckpt -trainer.max_epochs 40 --data.init_args.train_dataset.init_args.dataset_path <path_to_ddad_dataset> --data.init_args.val_datasets.init_args.dataset_path <path_to_ddad_dataset>
  • ERP model on DDAD (3 input images)
python train.py fit --data configs/data_configs/ddad_3image.yaml --model configs/fova_depth_erp_highres.yaml --trainer configs/default_trainer.yaml --trainer.default_root_dir train_logs/erp_ddad_3image --model.init_args.load_state_dict checkpoints/erp_ddad_2image.ckpt --trainer.max_epochs 40 --model.init_args.optimizer_config.init_lr 0.00002 --data.init_args.train_dataset.init_args.dataset_path <path_to_ddad_dataset> --data.init_args.val_datasets.init_args.dataset_path <path_to_ddad_dataset>
  • Cube model on DDAD (3 input images)
python train.py fit --data configs/data_configs/ddad_3image.yaml --model configs/fova_depth_cube_highres.yaml --trainer configs/default_trainer.yaml --trainer.default_root_dir train_logs/cube_ddad_3image --model.init_args.load_state_dict checkpoints/cube_ddad_2image.ckpt --trainer.max_epochs 40 --model.init_args.optimizer_config.init_lr 0.00002 -data.init_args.train_dataset.init_args.dataset_path <path_to_ddad_dataset> --data.init_args.val_datasets.init_args.dataset_path <path_to_ddad_dataset>

Testing (New) Datasets

We include some facilities for testing new datasets one might want to implement. For example, running

python datasets/test_dataset.py --data configs/data_configs/matterport360.yaml --type_to_test test --sample_number 25 --canon_type erp --data.init_args.test_datasets.init_args.dataset_path  <path_to_matterport_dataset>

will save the 25th sample from the Matterport training dataset to the test_dataset_output folder. The sample contains the original images and unprojected distance maps in world coordinates, saved in PLY format for visualization in MeshLab or similar tools to ensure alignment (i.e. you loaded all coordinate systems correctly). It also exports images warped to --canon_type=erp and the corresponding unprojected canonical distances in PLY. Additionally, the script saves the reference image rectified alongside each source image in ERP format, where corresponding features are vertically aligned, aiding in pose verification without needing ground truth distance.

Citation

If you find this code useful, please consider citing:

@inproceedings{lichy2024fova,
  title     = {{FoVA-Depth}: {F}ield-of-View Agnostic Depth Estimation for Cross-Dataset Generalization},
  author    = {Lichy, Daniel and Su, Hang and Badki, Abhishek and Kautz, Jan and Gallo, Orazio},
  booktitle = {International Conference on 3D Vision (3DV)},
  year      = {2024}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages