Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add sqrt for math #3242

Merged
merged 21 commits into from
Jun 7, 2022
Merged
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
* `ERC20FlashMint`: Add customizable flash fee receiver. ([#3327](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3327))
* `ERC20TokenizedVault`: add an extension of `ERC20` that implements the ERC4626 Tokenized Vault Standard. ([#3171](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3171))
* `Math`: add a `mulDiv` function that can round the result either up or down. ([#3171](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3171))
* `Math`: Add a `sqrt` function to compute square roots of integers, rounding either up or down. ([#3242](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3242))
* `Strings`: add a new overloaded function `toHexString` that converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. ([#3403](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3403))
* `EnumerableMap`: add new `UintToUintMap` map type. ([#3338](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3338))
* `EnumerableMap`: add new `Bytes32ToUintMap` map type. ([#3416](https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3416))
Expand Down
4 changes: 4 additions & 0 deletions contracts/mocks/MathMock.sol
Original file line number Diff line number Diff line change
Expand Up @@ -29,4 +29,8 @@ contract MathMock {
) public pure returns (uint256) {
return Math.mulDiv(a, b, denominator, direction);
}

function sqrt(uint256 a, Math.Rounding direction) public pure returns (uint256) {
return Math.sqrt(a, direction);
}
}
74 changes: 74 additions & 0 deletions contracts/utils/math/Math.sol
Original file line number Diff line number Diff line change
Expand Up @@ -149,4 +149,78 @@ library Math {
}
return result;
}

/**
* @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}

// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`.
// We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
// This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
// Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
// good first aproximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1;
uint256 x = a;
if (x >> 128 > 0) {
x >>= 128;
result <<= 64;
}
if (x >> 64 > 0) {
x >>= 64;
result <<= 32;
}
if (x >> 32 > 0) {
x >>= 32;
result <<= 16;
}
if (x >> 16 > 0) {
x >>= 16;
result <<= 8;
}
if (x >> 8 > 0) {
x >>= 8;
result <<= 4;
}
if (x >> 4 > 0) {
x >>= 4;
result <<= 2;
}
if (x >> 2 > 0) {
result <<= 1;
}

// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}

/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
uint256 result = sqrt(a);
if (rounding == Rounding.Up && result * result < a) {
result += 1;
}
return result;
}
}
34 changes: 34 additions & 0 deletions test/utils/math/Math.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -182,4 +182,38 @@ contract('Math', function (accounts) {
});
});
});

describe('sqrt', function () {
it('rounds down', async function () {
expect(await this.math.sqrt(new BN('0'), Rounding.Down)).to.be.bignumber.equal('0');
expect(await this.math.sqrt(new BN('1'), Rounding.Down)).to.be.bignumber.equal('1');
expect(await this.math.sqrt(new BN('2'), Rounding.Down)).to.be.bignumber.equal('1');
expect(await this.math.sqrt(new BN('3'), Rounding.Down)).to.be.bignumber.equal('1');
expect(await this.math.sqrt(new BN('4'), Rounding.Down)).to.be.bignumber.equal('2');
expect(await this.math.sqrt(new BN('144'), Rounding.Down)).to.be.bignumber.equal('12');
expect(await this.math.sqrt(new BN('999999'), Rounding.Down)).to.be.bignumber.equal('999');
expect(await this.math.sqrt(new BN('1000000'), Rounding.Down)).to.be.bignumber.equal('1000');
expect(await this.math.sqrt(new BN('1000001'), Rounding.Down)).to.be.bignumber.equal('1000');
expect(await this.math.sqrt(new BN('1002000'), Rounding.Down)).to.be.bignumber.equal('1000');
expect(await this.math.sqrt(new BN('1002001'), Rounding.Down)).to.be.bignumber.equal('1001');
expect(await this.math.sqrt(MAX_UINT256, Rounding.Down))
.to.be.bignumber.equal('340282366920938463463374607431768211455');
});

it('rounds up', async function () {
expect(await this.math.sqrt(new BN('0'), Rounding.Up)).to.be.bignumber.equal('0');
expect(await this.math.sqrt(new BN('1'), Rounding.Up)).to.be.bignumber.equal('1');
expect(await this.math.sqrt(new BN('2'), Rounding.Up)).to.be.bignumber.equal('2');
expect(await this.math.sqrt(new BN('3'), Rounding.Up)).to.be.bignumber.equal('2');
expect(await this.math.sqrt(new BN('4'), Rounding.Up)).to.be.bignumber.equal('2');
expect(await this.math.sqrt(new BN('144'), Rounding.Up)).to.be.bignumber.equal('12');
expect(await this.math.sqrt(new BN('999999'), Rounding.Up)).to.be.bignumber.equal('1000');
expect(await this.math.sqrt(new BN('1000000'), Rounding.Up)).to.be.bignumber.equal('1000');
expect(await this.math.sqrt(new BN('1000001'), Rounding.Up)).to.be.bignumber.equal('1001');
expect(await this.math.sqrt(new BN('1002000'), Rounding.Up)).to.be.bignumber.equal('1001');
expect(await this.math.sqrt(new BN('1002001'), Rounding.Up)).to.be.bignumber.equal('1001');
expect(await this.math.sqrt(MAX_UINT256, Rounding.Up))
.to.be.bignumber.equal('340282366920938463463374607431768211456');
});
});
});