-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PHI] Migrate matmul kernel (#48162)
* cleanup unused code * unify is_int8 is_bfloat16 * Simplify matmul_v2 FWD kernel * remove RunKernel methods * remove import namespace * remove headers * clean fluid/phi cross imports * remove fluid axpy_handler * delete fluid methods * activations * OneDNNMemDesc * MKLDNNFormatForSize * MatchShapeToLayout * MKLDNNMemoryFormat * MKLDNNFormat * ReorderMKLDNNHandler * to_void_cast * review suggestions * interpolate * remove fluid depedency * init * ExecuteMatMulV2 * rm fluid kernel * matmul_grad * remove mutable_data * mul_grad * matmul fwd * add extra attr * temp disable passes * re-enable passes * workaround for matmul+act * fix for matmul+eltwise_add * fix typo * merge bugfix #48364 * remove merge conflict
- Loading branch information
Showing
4 changed files
with
186 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/matmul_kernel.h" | ||
|
||
#include "paddle/phi/backends/onednn/onednn_reuse.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
|
||
namespace phi { | ||
|
||
DDim GetDimsForInput(const OneDNNContext &dev_ctx, | ||
DDim input_dims, | ||
std::string input_name) { | ||
auto shape = | ||
dev_ctx.HasDnnAttr("fused_reshape_" + input_name) | ||
? PADDLE_GET_CONST(std::vector<int>, | ||
dev_ctx.GetDnnAttr("fused_reshape_" + input_name)) | ||
: std::vector<int>(); | ||
auto axis = dev_ctx.HasDnnAttr("fused_transpose_" + input_name) | ||
? PADDLE_GET_CONST( | ||
std::vector<int>, | ||
dev_ctx.GetDnnAttr("fused_transpose_" + input_name)) | ||
: std::vector<int>(); | ||
if (!shape.empty() && !axis.empty()) { | ||
return input_dims.reshape(shape).transpose(axis); | ||
} | ||
return input_dims; | ||
} | ||
|
||
void CalculateMatrixDims(const std::vector<int64_t> &x_dims, | ||
const std::vector<int64_t> &y_dims, | ||
std::vector<int64_t> *x_bd_dims, | ||
std::vector<int64_t> *y_bd_dims, | ||
DenseTensor *out, | ||
const bool is_output_fused) { | ||
if (x_dims.size() == 1) { | ||
(*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0]; | ||
} else if (x_dims.size() == 2) { | ||
(*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1]; | ||
(*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0]; | ||
} else { | ||
for (size_t i = 0; i < x_dims.size(); ++i) { | ||
(*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i]; | ||
} | ||
} | ||
if (y_dims.size() == 1) { | ||
(*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0]; | ||
} else if (y_dims.size() == 2) { | ||
(*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1]; | ||
(*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0]; | ||
} else { | ||
for (size_t i = 0; i < y_dims.size(); ++i) { | ||
(*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i]; | ||
} | ||
} | ||
|
||
if (!is_output_fused && x_dims.size() > 2 && y_dims.size() > 2) { | ||
auto out_dims = vectorize(out->dims()); | ||
for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) { | ||
PADDLE_ENFORCE_EQ( | ||
(*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 || | ||
(*y_bd_dims)[i] == 1, | ||
true, | ||
errors::InvalidArgument( | ||
"Tensor dimensions are incorrect for broadcasting." | ||
"Dimensions in X and Y must be same or equal to 1, but " | ||
"received x_dim[%d]=%d and y_dims[%d]= %d", | ||
i, | ||
(*x_bd_dims)[i], | ||
i, | ||
(*y_bd_dims)[i])); | ||
(out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]); | ||
} | ||
out->Resize(make_ddim((out_dims))); | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void MatmulKernel(const Context &dev_ctx, | ||
const DenseTensor &x, | ||
const DenseTensor &y, | ||
bool transpose_x, | ||
bool transpose_y, | ||
DenseTensor *out) { | ||
if (dev_ctx.HasDnnAttr("head_number")) { | ||
const auto head_number = | ||
PADDLE_GET_CONST(int, dev_ctx.GetDnnAttr("head_number")); | ||
PADDLE_ENFORCE_EQ( | ||
head_number, | ||
1, | ||
errors::Unimplemented( | ||
"oneDNN matmul doesn't support multiple heads. Expected " | ||
"head_number=1. But received `head_number` is %d", | ||
head_number)); | ||
} | ||
|
||
constexpr bool is_int8 = funcs::is_int8<T>(); | ||
constexpr bool is_bfloat16 = funcs::is_bfloat16<T>(); | ||
const bool force_fp32_output = | ||
dev_ctx.HasDnnAttr("force_fp32_output") | ||
? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output")) | ||
: false; | ||
|
||
bool fuse_relu = false; | ||
if (dev_ctx.HasDnnAttr("fuse_activation")) { | ||
auto act_type = | ||
PADDLE_GET_CONST(std::string, dev_ctx.GetDnnAttr("fuse_activation")); | ||
if (act_type == "relu" || act_type == "relu6") { | ||
fuse_relu = true; | ||
} | ||
} | ||
|
||
auto x_dims = vectorize(GetDimsForInput(dev_ctx, x.dims(), "X")); | ||
auto y_dims = vectorize(GetDimsForInput(dev_ctx, y.dims(), "Y")); | ||
|
||
int ndims = std::max(x_dims.size(), y_dims.size()); | ||
ndims = std::max(ndims, 3); | ||
|
||
std::vector<int64_t> x_bd_dims(ndims, 1); | ||
std::vector<int64_t> y_bd_dims(ndims, 1); | ||
|
||
CalculateMatrixDims(x_dims, | ||
y_dims, | ||
&x_bd_dims, | ||
&y_bd_dims, | ||
out, | ||
funcs::IsOutputFused(dev_ctx)); | ||
|
||
if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) { | ||
funcs::ExecuteMatmul<T, float>( | ||
dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out); | ||
} else if (is_bfloat16) { | ||
funcs::ExecuteMatmul<T, paddle::platform::bfloat16>( | ||
dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out); | ||
} else if (fuse_relu) { | ||
funcs::ExecuteMatmul<T, uint8_t>( | ||
dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out); | ||
} else { | ||
funcs::ExecuteMatmul<T, int8_t>( | ||
dev_ctx, x, y, x_bd_dims, y_bd_dims, transpose_x, transpose_y, out); | ||
} | ||
} | ||
|
||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(matmul, | ||
OneDNN, | ||
ONEDNN, | ||
phi::MatmulKernel, | ||
float, | ||
phi::dtype::bfloat16, | ||
int8_t, | ||
uint8_t) {} |