Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

replace complex64/128 with complex template in cast Op #33019

Merged
merged 2 commits into from
May 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 8 additions & 10 deletions paddle/fluid/operators/cast_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -90,13 +90,11 @@ REGISTER_OPERATOR(cast, ops::CastOp,
ops::CastOpGradMaker<paddle::framework::OpDesc>,
ops::CastOpGradMaker<paddle::imperative::OpBase>,
ops::CastOpProtoMaker);
REGISTER_OP_CPU_KERNEL(cast, ops::CastOpKernel<CPU, float>,
ops::CastOpKernel<CPU, double>,
ops::CastOpKernel<CPU, int>,
ops::CastOpKernel<CPU, int64_t>,
ops::CastOpKernel<CPU, bool>,
ops::CastOpKernel<CPU, uint8_t>,
ops::CastOpKernel<CPU, paddle::platform::float16>,
ops::CastOpKernel<CPU, paddle::platform::bfloat16>,
ops::CastOpKernel<CPU, paddle::platform::complex64>,
ops::CastOpKernel<CPU, paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(
cast, ops::CastOpKernel<CPU, float>, ops::CastOpKernel<CPU, double>,
ops::CastOpKernel<CPU, int>, ops::CastOpKernel<CPU, int64_t>,
ops::CastOpKernel<CPU, bool>, ops::CastOpKernel<CPU, uint8_t>,
ops::CastOpKernel<CPU, paddle::platform::float16>,
ops::CastOpKernel<CPU, paddle::platform::bfloat16>,
ops::CastOpKernel<CPU, paddle::platform::complex<float>>,
ops::CastOpKernel<CPU, paddle::platform::complex<double>>);
8 changes: 4 additions & 4 deletions paddle/fluid/operators/cast_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -106,9 +106,9 @@ REGISTER_OP_CUDA_KERNEL(
ops::CastOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::CastOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
paddle::platform::complex<float>>,
ops::CastOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>);
paddle::platform::complex<double>>);
#else
REGISTER_OP_CUDA_KERNEL(
cast, ops::CastOpKernel<paddle::platform::CUDADeviceContext, float>,
Expand All @@ -122,7 +122,7 @@ REGISTER_OP_CUDA_KERNEL(
ops::CastOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::bfloat16>,
ops::CastOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
paddle::platform::complex<float>>,
ops::CastOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>);
paddle::platform::complex<double>>);
#endif
56 changes: 3 additions & 53 deletions paddle/fluid/pybind/tensor_py.h
Original file line number Diff line number Diff line change
Expand Up @@ -84,45 +84,7 @@ struct npy_format_descriptor<paddle::platform::bfloat16> {
static constexpr auto name = _("bfloat16");
};

// we register paddle::platform::complex64 as numpy.complex64.
template <>
struct npy_format_descriptor<paddle::platform::complex64> {
static py::dtype dtype() {
handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
return reinterpret_borrow<py::dtype>(ptr);
}

static std::string format() {
// Note: "F" represents complex64.
// Details at:
// https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
// for k, v in np.sctypeDict.iteritems():
// print '{0:14s} : {1:40s}'.format(str(k), v)
return "F";
}
static constexpr auto name = _("complext64");
};

// we register paddle::platform::complex128 as numpy.complex128.
template <>
struct npy_format_descriptor<paddle::platform::complex128> {
static py::dtype dtype() {
handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
return reinterpret_borrow<py::dtype>(ptr);
}

static std::string format() {
// Note: "D" represents complex128.
// Details at:
// https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
// for k, v in np.sctypeDict.iteritems():
// print '{0:14s} : {1:40s}'.format(str(k), v)
return "D";
}
static constexpr auto name = _("complext128");
};

// we register paddle::platform::complex64 as numpy.complex64.
// we register paddle::platform::complex<float> as numpy.complex64.
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
static py::dtype dtype() {
Expand Down Expand Up @@ -205,8 +167,6 @@ struct ValidDTypeToPyArrayChecker {

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex64);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex128);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
Expand All @@ -227,10 +187,6 @@ inline std::string TensorDTypeToPyDTypeStr(
} else if (std::is_same<T, platform::bfloat16>::value) { \
/* NumPy character code of uint16 due to no support for bfloat16 */ \
return "H"; \
} else if (std::is_same<T, platform::complex64>::value) { \
return "F"; \
} else if (std::is_same<T, platform::complex128>::value) { \
return "D"; \
} else if (std::is_same<T, platform::complex<float>>::value) { \
return "F"; \
} else if (std::is_same<T, platform::complex<double>>::value) { \
Expand Down Expand Up @@ -410,12 +366,6 @@ void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
} else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
zero_copy);
} else if (py::isinstance<py::array_t<paddle::platform::complex64>>(array)) {
SetTensorFromPyArrayT<paddle::platform::complex64, P>(self, array, place,
zero_copy);
} else if (py::isinstance<py::array_t<paddle::platform::complex128>>(array)) {
SetTensorFromPyArrayT<paddle::platform::complex128, P>(self, array, place,
zero_copy);
} else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
array)) {
SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
Expand Down Expand Up @@ -645,9 +595,9 @@ inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
case framework::proto::VarType::BF16:
return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
case framework::proto::VarType::COMPLEX64:
return _sliceAndConcat<paddle::platform::complex64>(self, obj, dim);
return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
case framework::proto::VarType::COMPLEX128:
return _sliceAndConcat<paddle::platform::complex128>(self, obj, dim);
return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
case framework::proto::VarType::FP32:
return _sliceAndConcat<float>(self, obj, dim);
case framework::proto::VarType::FP64:
Expand Down
73 changes: 73 additions & 0 deletions python/paddle/fluid/tests/unittests/test_complex_cast.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division

import unittest
import numpy as np

import paddle


class TestComplexCastOp(unittest.TestCase):
def test_complex_to_real(self):
r = np.random.random(size=[10, 10]) * 10
i = np.random.random(size=[10, 10])

c_t = paddle.to_tensor(r + i * 1J, dtype='complex64')

self.assertEqual(c_t.cast('int64').dtype, paddle.int64)
self.assertEqual(c_t.cast('int32').dtype, paddle.int32)
self.assertEqual(c_t.cast('float32').dtype, paddle.float32)
self.assertEqual(c_t.cast('float64').dtype, paddle.float64)
self.assertEqual(c_t.cast('bool').dtype, paddle.bool)

self.assertTrue(
np.allclose(c_t.cast('int64').numpy(), r.astype('int64')))
self.assertTrue(
np.allclose(c_t.cast('int32').numpy(), r.astype('int32')))
self.assertTrue(
np.allclose(c_t.cast('float32').numpy(), r.astype('float32')))
self.assertTrue(
np.allclose(c_t.cast('float64').numpy(), r.astype('float64')))
self.assertTrue(np.allclose(c_t.cast('bool').numpy(), r.astype('bool')))

def test_real_to_complex(self):
r = np.random.random(size=[10, 10]) * 10
r_t = paddle.to_tensor(r)

self.assertEqual(r_t.cast('complex64').dtype, paddle.complex64)
self.assertEqual(r_t.cast('complex128').dtype, paddle.complex128)

self.assertTrue(np.allclose(r_t.cast('complex64').real().numpy(), r))
self.assertTrue(np.allclose(r_t.cast('complex128').real().numpy(), r))

def test_complex64_complex128(self):
r = np.random.random(size=[10, 10])
i = np.random.random(size=[10, 10])

c = r + i * 1J
c_64 = paddle.to_tensor(c, dtype='complex64')
c_128 = paddle.to_tensor(c, dtype='complex128')

self.assertTrue(c_64.cast('complex128').dtype, paddle.complex128)
self.assertTrue(c_128.cast('complex128').dtype, paddle.complex64)
self.assertTrue(
np.allclose(c_64.cast('complex128').numpy(), c_128.numpy()))
self.assertTrue(
np.allclose(c_128.cast('complex128').numpy(), c_64.numpy()))


if __name__ == '__main__':
unittest.main()