-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[NPU] add one_hot_op_npu and tests #34258
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/one_hot_op.h" | ||
|
||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
using Tensor = framework::Tensor; | ||
|
||
template <typename T> | ||
class OneHotNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto& dev_ctx = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>(); | ||
auto* in = ctx.Input<LoDTensor>("X"); | ||
auto* out = ctx.Output<LoDTensor>("Out"); | ||
int depth = ctx.Attr<int>("depth"); | ||
|
||
if (ctx.HasInput("depth_tensor")) { | ||
auto* depth_tensor = ctx.Input<Tensor>("depth_tensor"); | ||
std::vector<int32_t> depth_data; | ||
framework::TensorToVector(*depth_tensor, dev_ctx, &depth_data); | ||
depth = depth_data[0]; | ||
auto in_dims = in->dims(); | ||
framework::DDim out_dims(in_dims); | ||
out_dims[out_dims.size() - 1] = depth; | ||
out->Resize(out_dims); | ||
} | ||
out->mutable_data<float>(ctx.GetPlace()); | ||
|
||
Tensor on_value, off_value; | ||
on_value.mutable_data<float>(framework::make_ddim({1}), ctx.GetPlace()); | ||
off_value.mutable_data<float>(framework::make_ddim({1}), ctx.GetPlace()); | ||
FillNpuTensorWithConstant<float>(&on_value, 1.0f); | ||
FillNpuTensorWithConstant<float>(&off_value, 0.0f); | ||
|
||
if (in->type() == framework::proto::VarType::INT32) { | ||
NpuOpRunner runner; | ||
runner.SetType("OneHot") | ||
.AddInput(*in) | ||
.AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)})) | ||
.AddInput(on_value) | ||
.AddInput(off_value) | ||
.AddAttr("axis", -1) | ||
.AddOutput(*out); | ||
runner.Run(dev_ctx.stream()); | ||
} else { | ||
Tensor transformed_in; | ||
transformed_in.mutable_data<int32_t>(in->dims(), dev_ctx.GetPlace()); | ||
const auto& cast_runner = NpuOpRunner("Cast", {*in}, {transformed_in}, | ||
{{"dst_type", ACL_INT32}}); | ||
cast_runner.Run(dev_ctx.stream()); | ||
NpuOpRunner runner; | ||
runner.SetType("OneHot") | ||
.AddInput(transformed_in) | ||
.AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)})) | ||
.AddInput(on_value) | ||
.AddInput(off_value) | ||
.AddAttr("axis", -1) | ||
.AddOutput(*out); | ||
runner.Run(dev_ctx.stream()); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OP_NPU_KERNEL(one_hot, ops::OneHotNPUKernel<int32_t>, | ||
ops::OneHotNPUKernel<int64_t>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import sys | ||
import unittest | ||
import numpy as np | ||
sys.path.append("..") | ||
|
||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
import paddle.fluid.core as core | ||
from paddle.fluid.framework import Program, program_guard | ||
|
||
paddle.enable_static() | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 秋良在这个PR #34240 里面修改了,如果这个PR在秋良的PR之后合入的话,可以把这里的skipIf代码去掉。后面所有的class代码都一样可以去掉。 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 已更新 |
||
class TestOneHotOp(OpTest): | ||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = 'one_hot' | ||
depth = 10 | ||
depth_np = np.array(10).astype('int32') | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} | ||
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. check_dygraph=False 删掉,后面的也是 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 参考test_one_hot_op.py,删掉check_dygraph=False 会报错 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 好的 |
||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestOneHotOp_attr(OpTest): | ||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = 'one_hot' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestOneHotOp_default_dtype(OpTest): | ||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = 'one_hot' | ||
depth = 10 | ||
depth_np = np.array(10).astype('int32') | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} | ||
self.attrs = {} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestOneHotOp_default_dtype_attr(OpTest): | ||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = 'one_hot' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestOneHotOp_out_of_range(OpTest): | ||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = 'one_hot' | ||
depth = 10 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), | ||
depth)).astype('float32') | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'depth': depth, 'allow_out_of_range': True} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestOneHotOp_dtype_int64(OpTest): | ||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = 'one_hot' | ||
depth = 10 | ||
dimension = 12 | ||
x_lod = [[4, 1, 3, 3]] | ||
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] | ||
x = np.array(x).astype('int64').reshape([sum(x_lod[0]), 1]) | ||
|
||
out = np.zeros(shape=(np.product(x.shape[:-1]), | ||
depth)).astype('float32') | ||
|
||
for i in range(np.product(x.shape)): | ||
out[i, x[i]] = 1.0 | ||
|
||
self.inputs = {'X': (x, x_lod)} | ||
self.attrs = {'depth': depth} | ||
self.outputs = {'Out': (out, x_lod)} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False) | ||
|
||
|
||
if __name__ == '__main__': | ||
paddle.enable_static() | ||
unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
To make code clear, maybe
on_value
andoff_value
can write likedepth