Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PHI] Migrate sgd and stack oneDNN kernels #46374

Merged
merged 4 commits into from
Sep 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
146 changes: 0 additions & 146 deletions paddle/fluid/operators/mkldnn/stack_mkldnn_op.cc

This file was deleted.

90 changes: 0 additions & 90 deletions paddle/fluid/operators/optimizers/mkldnn/sgd_mkldnn_op.cc

This file was deleted.

1 change: 1 addition & 0 deletions paddle/phi/backends/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ endif()

if(WITH_MKLDNN)
list(APPEND BACKENDS_SRCS onednn/onednn_context.cc)
list(APPEND BACKENDS_SRCS onednn/axpy_handler.cc)
list(APPEND BACKENDS_DEPS mkldnn)
endif()

Expand Down
133 changes: 133 additions & 0 deletions paddle/phi/backends/onednn/axpy_handler.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/backends/onednn/axpy_handler.h"

#include <cinttypes>
#include <memory>
#include <string>
#include <vector>

#include "paddle/phi/backends/onednn/onednn_helper.h"

namespace phi {
namespace funcs {

template <typename T>
class AXPYHandler {
public:
AXPYHandler(const dnnl::engine onednn_engine, int n, float alpha) {
OneDNNContext::tls().log_lib_version();
auto md = dnnl::memory::desc(
{n}, OneDNNGetDataType<T>(), dnnl::memory::format_tag::x);
src_mem_ = dnnl::memory(md, onednn_engine, DNNL_MEMORY_NONE);
dst_mem_ = dnnl::memory(md, onednn_engine, DNNL_MEMORY_NONE);
dnnl::primitive_attr reorder_attr;
dnnl::post_ops post_operations;
if (alpha != 1.f) {
std::vector<float> scales(1, alpha);
reorder_attr.set_output_scales(0, scales);
}
post_operations.append_sum(1.0f);

reorder_attr.set_post_ops(post_operations);
reorder_p_ = dnnl::reorder(src_mem_, dst_mem_, reorder_attr);
}

dnnl::memory &AcquireSrcMemory(const T *x) {
src_mem_.set_data_handle(to_void_cast<T>(x));
return src_mem_;
}

dnnl::memory &AcquireDstMemory(T *y) {
dst_mem_.set_data_handle(y);
return dst_mem_;
}

const dnnl::reorder &AcquireReorder() { return reorder_p_; }

private:
dnnl::memory src_mem_;
dnnl::memory dst_mem_;
dnnl::reorder reorder_p_;
};

template class AXPYHandler<float>;
template class AXPYHandler<phi::dtype::bfloat16>;

template <typename T>
static void naive_axpy(int n, T alpha, const T *x, T *y) {
while (n-- > 0) {
*y += alpha * *x;
++y;
++x;
}
}

template <typename T>
class OneDNNAXPYHandler<T>::Impl {
public:
Impl(int64_t n, T alpha, const dnnl::engine onednn_engine);
void operator()(const T *x, T *y);

private:
std::unique_ptr<AXPYHandler<T>> handler_;
int64_t n_;
T alpha_;
};

template <typename T>
OneDNNAXPYHandler<T>::Impl::Impl(int64_t n,
T alpha,
const dnnl::engine onednn_engine)
: n_{n}, alpha_{alpha} {
handler_ = std::make_unique<AXPYHandler<T>>(
onednn_engine, n, static_cast<float>(alpha));
}

template <typename T>
void OneDNNAXPYHandler<T>::Impl::operator()(const T *x, T *y) {
if (this->n_ < 100) {
naive_axpy(this->n_, this->alpha_, x, y);
return;
}

auto &reorder_src_mem_p = handler_->AcquireSrcMemory(x);
auto &reorder_dst_mem_p = handler_->AcquireDstMemory(y);
auto reorder_p = handler_->AcquireReorder();
auto &astream = OneDNNContext::tls().get_stream();
reorder_p.execute(astream, reorder_src_mem_p, reorder_dst_mem_p);
astream.wait();
}

template <typename T>
OneDNNAXPYHandler<T>::OneDNNAXPYHandler(int64_t n,
T alpha,
const dnnl::engine onednn_engine)
: pimpl_{new Impl{n, alpha, onednn_engine},
[](Impl *impl) { delete impl; }} {
VLOG(4) << "[OneDNN] OneDNNAXPYHandler<" << typeid(T).name() << ">, "
<< "n: " << n << ", alpha: " << alpha;
}

template <typename T>
void OneDNNAXPYHandler<T>::operator()(const T *x, T *y) {
pimpl_->operator()(x, y);
}

template class OneDNNAXPYHandler<float>;
template class OneDNNAXPYHandler<dtype::bfloat16>;

} // namespace funcs
} // namespace phi
Loading