Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API Enhancement] No.1 support the any number of times in paddle.diff [used AI Studio] #56681

Merged
merged 5 commits into from
Aug 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 129 additions & 112 deletions python/paddle/tensor/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -5565,125 +5565,142 @@ def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
[[1, 1],
[1, 1]])
"""

if axis < 0:
axis = axis + len(x.shape)
if axis > len(x.shape):
axis = len(x.shape)
if axis < 0:
axis = 0
dtype = x.dtype
axes = [axis]
infer_flags = [1 for i in range(len(axes))]
if in_dynamic_mode():
has_pend = False
input_list = []
if prepend is not None and append is not None:
input_list = [prepend, x, append]
has_pend = True
elif prepend is not None:
input_list = [prepend, x]
has_pend = True
elif append is not None:
input_list = [x, append]
has_pend = True
if has_pend:
new_input = _C_ops.concat(input_list, axis)
else:
new_input = x

attrs_1 = ()
attrs_2 = ()

dim_len = new_input.shape[axis]

starts_1 = [0]
attrs_1 += ('starts', starts_1)
ends_1 = [dim_len - 1]
attrs_1 += ('ends', ends_1)
input_front = _C_ops.slice(
new_input, axes, starts_1, ends_1, infer_flags, []
)
starts_2 = [1]
attrs_2 += ('starts', starts_2)
ends_2 = [dim_len]
attrs_2 += ('ends', ends_2)
input_back = _C_ops.slice(
new_input, axes, starts_2, ends_2, infer_flags, []
if n < 1:
raise ValueError(
"Diff expects input to be at least one-dimensional but got {}".format(
n
)
)

if x.dtype == paddle.bool:
return _C_ops.logical_xor(input_back, input_front)
def _diff_handler(x, n=1, axis=-1, prepend=None, append=None, name=None):
if axis < 0:
axis = axis + len(x.shape)
if axis > len(x.shape):
axis = len(x.shape)
if axis < 0:
axis = 0
dtype = x.dtype
axes = [axis]
infer_flags = [1 for i in range(len(axes))]
if in_dynamic_mode():
has_pend = False
input_list = []
if prepend is not None and append is not None:
input_list = [prepend, x, append]
has_pend = True
elif prepend is not None:
input_list = [prepend, x]
has_pend = True
elif append is not None:
input_list = [x, append]
has_pend = True
if has_pend:
new_input = _C_ops.concat(input_list, axis)
else:
new_input = x

attrs_1 = ()
attrs_2 = ()

dim_len = new_input.shape[axis]

starts_1 = [0]
attrs_1 += ('starts', starts_1)
ends_1 = [dim_len - 1]
attrs_1 += ('ends', ends_1)
input_front = _C_ops.slice(
new_input, axes, starts_1, ends_1, infer_flags, []
)
starts_2 = [1]
attrs_2 += ('starts', starts_2)
ends_2 = [dim_len]
attrs_2 += ('ends', ends_2)
input_back = _C_ops.slice(
new_input, axes, starts_2, ends_2, infer_flags, []
)

if x.dtype == paddle.bool:
return _C_ops.logical_xor(input_back, input_front)
else:
return _C_ops.subtract(input_back, input_front)
else:
return _C_ops.subtract(input_back, input_front)
else:
check_variable_and_dtype(
x,
'x',
['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
'diff',
)
check_type(axis, 'axis', (int), 'diff')
helper = LayerHelper('diff', **locals())
has_pend = False
input_list = []
if prepend is not None and append is not None:
input_list = [prepend, x, append]
has_pend = True
elif prepend is not None:
input_list = [prepend, x]
has_pend = True
elif append is not None:
input_list = [x, append]
has_pend = True

if has_pend:
new_input = helper.create_variable_for_type_inference(dtype)
check_variable_and_dtype(
x,
'x',
['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
'diff',
)
check_type(axis, 'axis', (int), 'diff')
helper = LayerHelper('diff', **locals())
has_pend = False
input_list = []
if prepend is not None and append is not None:
input_list = [prepend, x, append]
has_pend = True
elif prepend is not None:
input_list = [prepend, x]
has_pend = True
elif append is not None:
input_list = [x, append]
has_pend = True

if has_pend:
new_input = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='concat',
inputs={'X': input_list},
outputs={'Out': [new_input]},
attrs={'axis': axis},
)
else:
new_input = x

dim_len = new_input.shape[axis]
attrs_1 = {'axes': axes}
starts_1 = [0]
ends_1 = [dim_len - 1]
attrs_1['starts'] = starts_1
attrs_1['ends'] = ends_1
input_front = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='concat',
inputs={'X': input_list},
outputs={'Out': [new_input]},
attrs={'axis': axis},
type='slice',
inputs={'Input': new_input},
attrs=attrs_1,
outputs={'Out': input_front},
)
else:
new_input = x

dim_len = new_input.shape[axis]
attrs_1 = {'axes': axes}
starts_1 = [0]
ends_1 = [dim_len - 1]
attrs_1['starts'] = starts_1
attrs_1['ends'] = ends_1
input_front = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='slice',
inputs={'Input': new_input},
attrs=attrs_1,
outputs={'Out': input_front},
)
attrs_2 = {'axes': axes}
starts_2 = [1]
ends_2 = [dim_len]
attrs_2['starts'] = starts_2
attrs_2['ends'] = ends_2
input_back = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='slice',
inputs={'Input': new_input},
attrs=attrs_2,
outputs={'Out': input_back},
)

if dtype == paddle.bool:
out = helper.create_variable_for_type_inference(dtype)
attrs_2 = {'axes': axes}
starts_2 = [1]
ends_2 = [dim_len]
attrs_2['starts'] = starts_2
attrs_2['ends'] = ends_2
input_back = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='logical_xor',
inputs={"X": input_back, "Y": input_front},
outputs={"Out": out},
type='slice',
inputs={'Input': new_input},
attrs=attrs_2,
outputs={'Out': input_back},
)
else:
out = paddle.tensor.math.subtract(input_back, input_front)
return out

if dtype == paddle.bool:
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='logical_xor',
inputs={"X": input_back, "Y": input_front},
outputs={"Out": out},
)
else:
out = paddle.tensor.math.subtract(input_back, input_front)
return out

out = _diff_handler(
x, n=1, axis=axis, prepend=prepend, append=append, name=name
)
if n > 1:
for _ in range(n - 1):
out = _diff_handler(
out, n=1, axis=axis, prepend=prepend, append=append, name=name
)
return out


def angle(x, name=None):
Expand Down
9 changes: 9 additions & 0 deletions test/legacy_test/test_diff_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,15 @@ def test_grad(self):
self.func_grad()


class TestDiffOpN(TestDiffOp):
def set_args(self):
self.input = np.array([1, 4, 5, 2]).astype('float32')
self.n = 2
self.axis = 0
self.prepend = None
self.append = None


class TestDiffOpAxis(TestDiffOp):
def set_args(self):
self.input = np.array([[1, 4, 5, 2], [1, 5, 4, 2]]).astype('float32')
Expand Down