-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feature/print op #6799
Merged
Merged
feature/print op #6799
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
a361df5
init
Superjomn b1fcc53
add print op
Superjomn 29e508b
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Superjomn 3957bd3
fix comment format
Superjomn bf03427
restore cmake
Superjomn dda413d
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Superjomn efb4618
update
Superjomn 0bc18db
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
Superjomn d78a2ae
add gpu check
Superjomn d4a2b35
fix compile
Superjomn 8053a88
use numel
Superjomn File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <algorithm> | ||
#include <ctime> | ||
|
||
#include "paddle/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
#define CLOG std::cout | ||
|
||
struct Formater { | ||
std::string message; | ||
std::string name; | ||
std::vector<int> dims; | ||
std::type_index dtype{typeid(char)}; | ||
framework::LoD lod; | ||
int summarize; | ||
void* data{nullptr}; | ||
|
||
void operator()(size_t size) { | ||
PrintMessage(); | ||
PrintName(); | ||
PrintDims(); | ||
PrintDtype(); | ||
PrintLod(); | ||
PrintData(size); | ||
} | ||
|
||
private: | ||
void PrintMessage() { CLOG << std::time(nullptr) << "\t" << message; } | ||
void PrintName() { | ||
if (!name.empty()) { | ||
CLOG << "Tensor[" << name << "]" << std::endl; | ||
} | ||
} | ||
void PrintDims() { | ||
if (!dims.empty()) { | ||
CLOG << "\tshape: ["; | ||
for (auto i : dims) { | ||
CLOG << i << ","; | ||
} | ||
CLOG << "]" << std::endl; | ||
} | ||
} | ||
void PrintDtype() { | ||
if (dtype.hash_code() != typeid(char).hash_code()) { | ||
CLOG << "\tdtype: " << dtype.name() << std::endl; | ||
} | ||
} | ||
void PrintLod() { | ||
if (!lod.empty()) { | ||
CLOG << "\tLoD: ["; | ||
for (auto level : lod) { | ||
CLOG << "[ "; | ||
for (auto i : level) { | ||
CLOG << i << ","; | ||
} | ||
CLOG << " ]"; | ||
} | ||
CLOG << "]" << std::endl; | ||
} | ||
} | ||
|
||
void PrintData(size_t size) { | ||
PADDLE_ENFORCE_NOT_NULL(data); | ||
// print float | ||
if (dtype.hash_code() == typeid(float).hash_code()) { | ||
Display<float>(size); | ||
} | ||
if (dtype.hash_code() == typeid(double).hash_code()) { | ||
Display<double>(size); | ||
} | ||
if (dtype.hash_code() == typeid(int).hash_code()) { | ||
Display<int>(size); | ||
} | ||
if (dtype.hash_code() == typeid(int64_t).hash_code()) { | ||
Display<int64_t>(size); | ||
} | ||
} | ||
|
||
template <typename T> | ||
void Display(size_t size) { | ||
auto* d = (T*)data; | ||
CLOG << "\tdata: "; | ||
if (summarize != -1) { | ||
summarize = std::min(size, (size_t)summarize); | ||
for (int i = 0; i < summarize; i++) { | ||
CLOG << d[i] << ","; | ||
} | ||
} else { | ||
for (size_t i = 0; i < size; i++) { | ||
CLOG << d[i] << ","; | ||
} | ||
} | ||
CLOG << std::endl; | ||
} | ||
}; | ||
|
||
// TODO(ChunweiYan) there should be some other printers for TensorArray | ||
class TensorPrintOp : public framework::OperatorBase { | ||
public: | ||
TensorPrintOp(const std::string& type, | ||
const framework::VariableNameMap& inputs, | ||
const framework::VariableNameMap& outputs, | ||
const framework::AttributeMap& attrs) | ||
: OperatorBase(type, inputs, outputs, attrs) {} | ||
|
||
TensorPrintOp(const TensorPrintOp& o) | ||
: framework::OperatorBase( | ||
static_cast<const framework::OperatorBase&>(o)) { | ||
PADDLE_THROW("Not implemented"); | ||
} | ||
|
||
void Run(const framework::Scope& scope, | ||
const platform::Place& place) const override { | ||
// Only run the `first_n` times. | ||
int first_n = Attr<int>("first_n"); | ||
if (first_n > 0 && ++times_ > first_n) return; | ||
|
||
PADDLE_ENFORCE(!Inputs("input").empty(), "input should be set"); | ||
auto* input_var = scope.FindVar(Input("input")); | ||
PADDLE_ENFORCE_NOT_NULL(input_var); | ||
auto& tensor = input_var->Get<framework::LoDTensor>(); | ||
|
||
// TODO(ChunweiYan) support GPU | ||
PADDLE_ENFORCE(platform::is_cpu_place(tensor.place())); | ||
|
||
Formater formater; | ||
if (Attr<bool>("print_tensor_name")) { | ||
formater.name = Inputs("input").front(); | ||
} | ||
if (Attr<bool>("print_tensor_type")) { | ||
formater.dtype = tensor.type(); | ||
} | ||
if (Attr<bool>("print_tensor_shape")) { | ||
formater.dims.assign(tensor.dims()[0], | ||
tensor.dims()[tensor.dims().size() - 1]); | ||
} | ||
if (Attr<bool>("print_tensor_lod")) { | ||
formater.lod = tensor.lod(); | ||
} | ||
formater.summarize = Attr<int>("summarize"); | ||
formater.data = (void*)tensor.data<void>(); | ||
formater(tensor.numel()); | ||
} | ||
|
||
private: | ||
mutable int times_{0}; | ||
}; | ||
|
||
class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
PrintOpProtoAndCheckMaker(OpProto* proto, OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("input", "the tensor that will be displayed."); | ||
AddAttr<int>("first_n", "Only log `first_n` number of times."); | ||
AddAttr<std::string>("message", "A string message to print as a prefix."); | ||
AddAttr<int>("summarize", "Print this number of elements in the tensor."); | ||
AddAttr<bool>("print_tensor_name", "Whether to print the tensor name."); | ||
AddAttr<bool>("print_tensor_type", "Whether to print the tensor's dtype."); | ||
AddAttr<bool>("print_tensor_shape", "Whether to print the tensor's shape."); | ||
AddAttr<bool>("print_tensor_lod", "Whether to print the tensor's lod."); | ||
AddComment(R"DOC( | ||
Creates a print op that will print when a tensor is accessed. | ||
|
||
Wraps the tensor passed in so that whenever that a tensor is accessed, | ||
the message `message` is printed, along with the current value of the | ||
tensor `t`.)DOC"); | ||
} | ||
}; | ||
|
||
class InferShape : public framework::InferShapeBase { | ||
public: | ||
void operator()(framework::InferShapeContext* context) const override { | ||
PADDLE_ENFORCE(context->HasInput("input"), "input should be set"); | ||
} | ||
}; | ||
|
||
class InferVarType : public framework::VarTypeInference { | ||
public: | ||
void operator()(const framework::OpDesc& op_desc, | ||
framework::BlockDesc* block) const override {} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OPERATOR(print, paddle::operators::TensorPrintOp, | ||
paddle::operators::PrintOpProtoAndCheckMaker, | ||
paddle::operators::InferShape, | ||
paddle::operators::InferVarType, | ||
paddle::framework::EmptyGradOpMaker); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
import unittest | ||
import numpy as np | ||
from paddle.v2.fluid.executor import Executor | ||
import paddle.v2.fluid.core as core | ||
import paddle.v2.fluid.layers as pd | ||
|
||
|
||
class TestSumOp(unittest.TestCase): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. TestSumOp --> TestPrintOp |
||
def test_tensor(self): | ||
i = pd.zeros(shape=[2, 10], dtype='float32') | ||
|
||
pd.Print(i, message="I am a message", summarize=10) | ||
|
||
cpu = core.CPUPlace() | ||
exe = Executor(cpu) | ||
|
||
exe.run() | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
enforce(is_cpu_place(tensor.place()))