Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add split selected rows op #7604

Merged
merged 5 commits into from
Jan 19, 2018
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions paddle/operators/split_selected_rows_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/split_selected_rows_op.h"

namespace paddle {
namespace operators {

class SplitSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SplitSelectedRowsOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input SelectedRows.");
AddOutput("Out", "The outputs of input SelectedRows.").AsDuplicable();
AddAttr<std::vector<int>>("rows_section", "Rows section for output.")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

rows_section => `rows_sections

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

.SetDefault(std::vector<int>({}));
AddAttr<std::vector<int>>("height_section",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

height_sections

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"Height for each output SelectedRows.")
.SetDefault(std::vector<int>({}));

AddComment(R"DOC(
Split a SelectedRows with a specified rows section.
You could set height_section for specified the height for each output.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

height_sections is only needed when need to split the dims of the original tensor.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.


Example:
Input:
X.rows = {0, 7, 5}
X.height = 12
Attr:
rows_section = {1, 2}
height_section = {}
Out:
out0.rows = {0}
out0.height = 12
out1.rows = {7, 5}
out2.height = 12

)DOC");
}
};

class SplitSelectedRowsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "SplitSelectedRowsOp must has input X.");
PADDLE_ENFORCE(ctx->HasOutputs("Out"),
"SplitSelectedRowsOp must has output Out.");

std::vector<int> height_section =
ctx->Attrs().Get<std::vector<int>>("height_section");
std::vector<int> rows_section =
ctx->Attrs().Get<std::vector<int>>("rows_section");
PADDLE_ENFORCE_EQ(
rows_section.size(), ctx->Outputs("Out").size(),
"The size of rows section should be the same with Outputs size.");
int64_t n = ctx->Outputs("Out").size();

std::vector<framework::DDim> outs_dims;
outs_dims.reserve(n);

// make output dims
for (int64_t i = 0; i < n; ++i) {
auto dims = ctx->GetInputDim("X");
if (height_section.size()) {
PADDLE_ENFORCE_EQ(
height_section.size(), static_cast<size_t>(n),
"The size of height section should be the same with height"
" section size.");
dims[0] = height_section[i];
}
outs_dims.push_back(dims);
}
ctx->SetOutputsDim("Out", outs_dims);
}
};

class SplitSelectedRowsGradMaker : public framework::SingleGradOpDescMaker {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I didn't see a grad kernel implementation, did you missed that?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We reuse sum op as the grad op, and I will add the unit test for it.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you need to register the sum kernel as the grad kernel?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe don't need, just inherit framework::SingleGradOpDescMaker , we can use another Operator as the grad op.

public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *grad_op = new framework::OpDesc();
grad_op->SetType("sum");
grad_op->SetInput("X", OutputGrad("Out"));
grad_op->SetOutput("Out", InputGrad("X"));
grad_op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(grad_op);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(split_selected_rows, ops::SplitSelectedRowsOp,
ops::SplitSelectedRowsOpMaker,
ops::SplitSelectedRowsGradMaker);
REGISTER_OP_CPU_KERNEL(
split_selected_rows,
ops::SplitSelectedRowsOpKernel<paddle::platform::CPUPlace, float>);
58 changes: 58 additions & 0 deletions paddle/operators/split_selected_rows_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SplitSelectedRowsOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::SelectedRows>("X");
auto outs = ctx.MultiOutput<framework::SelectedRows>("Out");

auto rows_section = ctx.Attr<std::vector<int>>("rows_section");
auto height_section = ctx.Attr<std::vector<int>>("height_section");

int64_t n = outs.size();
int offset = 0;

for (int64_t i = 0; i < n; ++i) {
framework::Vector<int64_t> out_rows;
for (int64_t j = 0; j < rows_section[i]; ++j) {
out_rows.push_back(x->rows()[offset + j]);
}

auto& out = outs[i];
auto x_dims = x->GetCompleteDims();
x_dims[0] = rows_section[i];
out->mutable_value()->mutable_data<T>(x_dims, ctx.GetPlace());
framework::Copy(x->value().Slice(offset, rows_section[i] + offset),
x->place(), ctx.device_context(), out->mutable_value());
outs[i]->set_rows(out_rows);
if (height_section.size()) {
outs[i]->set_height(height_section[i]);
}
offset += rows_section[i];
}
}
};

} // namespace operators
} // namespace paddle
76 changes: 76 additions & 0 deletions python/paddle/v2/fluid/tests/test_split_selected_rows_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import paddle.v2.fluid.core as core
import numpy as np
from paddle.v2.fluid.op import Operator


class TestSpliteAndMergeSelectedRows(unittest.TestCase):
def test_check_output(self):
places = [core.CPUPlace()]
if core.is_compile_gpu():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)

def check_with_place(self, place):
scope = core.Scope()
rows = [0, 5, 7, 4]
height = 10
row_numel = 2

# initialize input variable X
x = scope.var('X').get_selected_rows()
x.set_rows(rows)
x.set_height(height)
np_array = np.ones((len(rows), row_numel)).astype("float32")
np_array[0, 0] = 2.0
np_array[2, 1] = 4.0
x_tensor = x.get_tensor()
x_tensor.set(np_array, place)

rows_section = [2, 2]
height_section = []

# initialize output variables [out0, out1]
out0 = scope.var('out0').get_selected_rows()
out1 = scope.var('out1').get_selected_rows()

# expected output selected rows
expected_out0_rows = [0, 5]
expected_out1_rows = [7, 4]
expected_height = height

split_selected_rows = Operator(
"split_selected_rows",
X="X",
Out=["out0", "out1"],
rows_section=rows_section,
height_section=height_section)

split_selected_rows.run(scope, place)

self.assertEqual(out0.rows(), expected_out0_rows)
self.assertEqual(out1.rows(), expected_out1_rows)

self.assertEqual(out0.height(), expected_height)
self.assertEqual(out1.height(), expected_height)

self.assertAlmostEqual(2.0, np.array(out0.get_tensor())[0, 0])
self.assertAlmostEqual(4.0, np.array(out1.get_tensor())[0, 1])


if __name__ == "__main__":
unittest.main()