Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add keras mnist demo #238

Merged
merged 17 commits into from
Feb 2, 2018
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 90 additions & 0 deletions demo/keras/TUTORIAL_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# 如何在Keras中使用VisualDL

下面我们演示一下如何在Keras中使用VisualDL,从而可以把Keras的训练过程可视化出来。我们将以Keras用卷积神经网络(CNN, Convolutional Neural Network)来训练
[MNIST](http://yann.lecun.com/exdb/mnist/) 数据集作为例子。


程序的主体来自Keras的官方GitHub [Example](https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py)。

我们只需要在代码里面创建 VisualDL 的数据采集 loggers

```python
# create VisualDL logger
logdir = "/workspace"
logger = LogWriter(logdir, sync_cycle=100)

# mark the components with 'train' label.
with logger.mode("train"):
# create a scalar component called 'scalars/'
scalar_keras_train_loss = logger.scalar(
"scalars/scalar_keras_train_loss")
image0 = logger.image("images/image0", 1)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why do we need to prefix with "images/"? Isn't this graph only going to show up in images section?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

'images/' is showing that we can group metrics by namespace, which will be implemented in the future.

image1 = logger.image("images/image1", 1)
histogram0 = logger.histogram("histogram/histogram0", num_buckets=50)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Same here, why do we need "histogram/" prefix?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto

histogram1 = logger.histogram("histogram/histogram1", num_buckets=50)

```

然后在Keras提供的回调函数(callback)中插入我们的数据采集代码就可以了。

```python
train_step = 0

class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []

def on_batch_end(self, batch, logs={}):
global train_step

# Scalar
scalar_keras_train_loss.add_record(train_step, logs.get('loss'))

# get weights for 2 layers
W0 = model.layers[0].get_weights()[0] # 3 x 3 x 1 x 32
W1 = model.layers[1].get_weights()[0] # 3 x 3 x 32 x 64

weight_array0 = W0.flatten()
weight_array1 = W1.flatten()

# histogram
histogram0.add_record(train_step, weight_array0)
histogram1.add_record(train_step, weight_array1)

# image
image0.start_sampling()
image0.add_sample([9, 32], weight_array0)
image0.finish_sampling()

image1.start_sampling()
image1.add_sample([288, 64], weight_array1)
image1.finish_sampling()

train_step += 1
self.losses.append(logs.get('loss'))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

whats this used for?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

removed as it is not very related to this demo.

```

训练结束后,各个组件的可视化结果如下:

关于误差的数值图的如下:

<p align=center>
<img width="70%" src="https://github.com/daming-lu/large_files/blob/master/keras_demo_figs/keras_scalar.png?raw=true" />
</p>

训练过后的第一,第二层卷积权重图的如下:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you can use an image component to visualize training image. Both the two images lacks information.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.


<p align=center>
<img width="70%" src="https://github.com/daming-lu/large_files/blob/master/keras_demo_figs/keras_image.png?raw=true" />
</p>


训练参数的柱状图的如下:

<p align=center>
<img width="70%" src="https://github.com/daming-lu/large_files/blob/master/keras_demo_figs/keras_histogram.png?raw=true" />
</p>



完整的演示程序可以在[这里](./keras_mnist_demo.py)下载。
120 changes: 120 additions & 0 deletions demo/keras/keras_mnist_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

from visualdl import LogWriter

batch_size = 2000
num_classes = 10
epochs = 10

# input image dimensions
img_rows, img_cols = 28, 28

# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(
loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])

# create VisualDL logger
logdir = "/workspace"
logger = LogWriter(logdir, sync_cycle=100)

# mark the components with 'train' label.
with logger.mode("train"):
# create a scalar component called 'scalars/'
scalar_keras_train_loss = logger.scalar("scalars/scalar_keras_train_loss")
image0 = logger.image("images/image0", 1)
image1 = logger.image("images/image1", 1)
histogram0 = logger.histogram("histogram/histogram0", num_buckets=50)
histogram1 = logger.histogram("histogram/histogram1", num_buckets=50)

train_step = 0


class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []

def on_batch_end(self, batch, logs={}):
global train_step

# Scalar
scalar_keras_train_loss.add_record(train_step, logs.get('loss'))

# get weights for 2 layers
W0 = model.layers[0].get_weights()[0] # 3 x 3 x 1 x 32
W1 = model.layers[1].get_weights()[0] # 3 x 3 x 32 x 64

weight_array0 = W0.flatten()
weight_array1 = W1.flatten()

# histogram
histogram0.add_record(train_step, weight_array0)
histogram1.add_record(train_step, weight_array1)

# image
image0.start_sampling()
image0.add_sample([9, 32], weight_array0)
image0.finish_sampling()

image1.start_sampling()
image1.add_sample([288, 64], weight_array1)
image1.finish_sampling()

train_step += 1
self.losses.append(logs.get('loss'))


history = LossHistory()

model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[history])
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])