Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PFCC算子性能优化】添加selu算子性能优化文档 #169

Merged
merged 4 commits into from
Jul 19, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions rfcs/OPs-Perf/20220706_Selu_op_optimization.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Selu OP性能优化设计文档


| 基本信息 | 内容 |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| 提交作者<input type="checkbox" class="rowselector hidden"> | carryyu |
| 提交时间<input type="checkbox" class="rowselector hidden"> | 2022-07-06 |
| 版本号 | V1.0 |
| 依赖飞桨版本<input type="checkbox" class="rowselector hidden"> | PaddleDevelop |
| 文件名 | 20220706_Selu_op_optimization.md<br> |

# 1 背景与意义

目前Paddle中的Selu是通过Eigen组合实现,没有用到一些性能优化的技巧,存在性能优化的空间。

## 1.1 飞桨现状

目前的实现有一定的性能优化空间,可以加入一些性能优化的技巧。当前性能如下表:
| Case No. | device | input_shape | input_type | Paddle Perf(ms) |
|---|---|---|---|---|
| 1 | Tesla T4 | [8, 1024, 3072] | float32 | 0.9122 |
| 2 | Tesla T4 | [8, 1024, 3072] | float64 | 5.2592 |

## 1.2 业内方案调研

Pytorch中对应`paddle.nn.functional.selu` 的Api为 `torch.nn.functional.selu`。调研发现Pytorch中采用的是`SeluKernel` Kernel完成该OP的GPU实现。PyTorch采用的方案是1维线程设置完成整体计算,整体性能如下:
| Case No. | device | input_shape | input_type | Pytorch Perf(ms) |
|---|---|---|---|---|
| 1 | Tesla T4 | [8, 1024, 3072] | float32 | 0.8349 |
| 2 | Tesla T4 | [8, 1024, 3072] | float64 | 5.4939 |

## 1.3 对比分析

目前Paddle与Pytorch的方案几乎相同,但理论上可以通过向量化读取和写入等手段进行优化,进一步提升算子性能。

# 2 设计方案与性能预期

## 2.1 关键模块与性能提升点

通过使用飞桨内部的Elementwise Kernel来进行计算。通过向量化读取、向量化写入以及gpu_launch_config.h中的线程配置方法对算子进行优化,预计提升5%。

## 2.2 Host端计算流程

通过gpu_launch_config.h中的线程配置方法配置1D线程。

## 2.4 Device端计算流程

设备端通过kps::ReadData和kps::WriteData对数据进行读写,再对每个值进行selu计算。

# 3 测试和验收的考量

参考:[算子性能优化验收标准](http://agroup.baidu.com/paddle-perf/md/article/4892913)
完成优化后,Paddle与优化前的Paddle的性能对比效果如下,达到了预期性能提升效果(提升5%):
| Case No. | device | input_shape | input_type | Paddle Perf(ms) | Old-Paddle Perf(ms) | diff |
|---|---|---|---|---|---|---|
| 1 | Tesla T4 | [8, 1024, 3072] | float32 | 0.8277 | 0.9122 | faster than 9.26% |
| 2 | Tesla T4 | [8, 1024, 3072] | float64 | 4.5655 | 5.2592 | faster than 13.19% |

完成优化后,Paddle与Pytorch的性能对比效果如下,在fp32情况下基本与Pytorch持平,在fp64情况下提升较大 :
| Case No. | device | input_shape | input_type | Paddle Perf(ms) | Pytorch Perf(ms) | diff |
|---|---|---|---|---|---|---|
| 1 | Tesla T4 | [8, 1024, 3072] | float32 | 0.8277 | 0.8349 | faster than 0.86% |
| 2 | Tesla T4 | [8, 1024, 3072] | float64 | 4.5655 | 5.4939 | faster than 16.89% |

# 4 可行性分析和排期规划

时间和开发排期规划,主要milestone

| No. | 开发内容 | 预期时间 |
|---|---|---|
| 1 | 理清Paddle中OP设计思路,同类产品中最佳设计方案 | 2022-07-06 |
| 2 | 完成开发文档设计 | 2022-07-14 |
| 3 | 完成代码开发工作,并通过线程CI测试 | 2022-07-17 |

# 5 影响面

需要进一步讨论的问题,开放性问题,有争议问题;对其他模块是否有影响。

# 名词解释

# 附件及参考资料

[1]. [OP Benchmark使用指南](https://github.com/PaddlePaddle/benchmark/blob/master/api/README.md)