Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

909 Add NumpyReader for IO factory #964

Merged
merged 7 commits into from
Aug 28, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/source/data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,11 @@ NibabelReader
.. autoclass:: NibabelReader
:members:

NumpyReader
~~~~~~~~~~~
.. autoclass:: NunpyReader
:members:


Nifti format handling
---------------------
Expand Down
92 changes: 92 additions & 0 deletions monai/data/image_reader.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

import numpy as np

from monai.config import KeysCollection
from monai.data.utils import correct_nifti_header_if_necessary
from monai.utils import ensure_tuple, optional_import

Expand Down Expand Up @@ -348,3 +349,94 @@ def _get_array_data(self, img: Nifti1Image) -> np.ndarray:

"""
return np.asarray(img.dataobj)


class NumpyReader(ImageReader):
"""
Load NPY or NPZ format data based on Numpy library, they can be arrays or pickled objects.
A typical usage is to load the `mask` data for classification task.
It can load part of the npz file with specified `npz_keys`.

Args:
npz_keys: if loading npz file, only load the specified keys, if None, load all the items.
stack the loaded items together to construct a new first dimension.

"""

def __init__(self, npz_keys: Optional[KeysCollection] = None):
super().__init__()
self._img: Optional[Sequence[Nifti1Image]] = None
if npz_keys is not None:
npz_keys = ensure_tuple(npz_keys)
self.npz_keys = npz_keys

def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool:
"""
Verify whether the specified file or files format is supported by Numpy reader.

Args:
filename: file name or a list of file names to read.
if a list of files, verify all the subffixes.

"""
suffixes: Sequence[str] = ["npz", "npy"]
return is_supported_format(filename, suffixes)

def read(self, data: Union[Sequence[str], str, np.ndarray], **kwargs):
"""
Read image data from specified file or files, or set a Numpy array.
Note that the returned object is Numpy array or list of Numpy arrays.
`self._img` is always a list, even only has 1 image.

Args:
data: file name or a list of file names to read.
kwargs: additional args for `numpy.load` API except `allow_pickle`. more details about available args:
https://numpy.org/doc/stable/reference/generated/numpy.load.html

"""
self._img = list()
if isinstance(data, np.ndarray):
self._img.append(data)
return data

filenames: Sequence[str] = ensure_tuple(data)
for name in filenames:
img = np.load(name, allow_pickle=True, **kwargs)
if name.endswith(".npz"):
# load expected items from NPZ file
npz_keys = [f"arr_{i}" for i in range(len(img))] if self.npz_keys is None else self.npz_keys
Nic-Ma marked this conversation as resolved.
Show resolved Hide resolved
for k in npz_keys:
self._img.append(img[k])
else:
self._img.append(img)

return self._img if len(filenames) > 1 else self._img[0]

def get_data(self):
"""
Extract data array and meta data from loaded data and return them.
This function returns 2 objects, first is numpy array of image data, second is dict of meta data.
It constructs `spatial_shape=data.shape` and stores in meta dict if the data is numpy array.
If loading a list of files, stack them together and add a new dimension as first dimension,
and use the meta data of the first image to represent the stacked result.

"""
img_array: List[np.ndarray] = list()
compatible_meta: Dict = None
if self._img is None:
raise RuntimeError("please call read() first then use get_data().")

for img in self._img:
header = dict()
if isinstance(img, np.ndarray):
header["spatial_shape"] = img.shape
img_array.append(img)

if compatible_meta is None:
compatible_meta = header
else:
if not np.allclose(header["spatial_shape"], compatible_meta["spatial_shape"]):
raise RuntimeError("spatial_shape of all images should be same.")

img_array_ = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0]
return img_array_, compatible_meta
90 changes: 90 additions & 0 deletions tests/test_numpy_reader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest

import numpy as np

from monai.data import NumpyReader


class TestNumpyReader(unittest.TestCase):
def test_npy(self):
test_data = np.random.randint(0, 256, size=[3, 4, 4])
with tempfile.TemporaryDirectory() as tempdir:
filepath = os.path.join(tempdir, "test_data.npy")
np.save(filepath, test_data)

reader = NumpyReader()
reader.read(filepath)
result = reader.get_data()
self.assertTupleEqual(result[1]["spatial_shape"], test_data.shape)
self.assertTupleEqual(result[0].shape, test_data.shape)
np.testing.assert_allclose(result[0], test_data)

def test_npz1(self):
test_data1 = np.random.randint(0, 256, size=[3, 4, 4])
with tempfile.TemporaryDirectory() as tempdir:
filepath = os.path.join(tempdir, "test_data.npy")
np.save(filepath, test_data1)

reader = NumpyReader()
reader.read(filepath)
result = reader.get_data()
self.assertTupleEqual(result[1]["spatial_shape"], test_data1.shape)
self.assertTupleEqual(result[0].shape, test_data1.shape)
np.testing.assert_allclose(result[0], test_data1)

def test_npz2(self):
test_data1 = np.random.randint(0, 256, size=[3, 4, 4])
test_data2 = np.random.randint(0, 256, size=[3, 4, 4])
with tempfile.TemporaryDirectory() as tempdir:
filepath = os.path.join(tempdir, "test_data.npz")
np.savez(filepath, test_data1, test_data2)

reader = NumpyReader()
reader.read(filepath)
result = reader.get_data()
self.assertTupleEqual(result[1]["spatial_shape"], test_data1.shape)
self.assertTupleEqual(result[0].shape, (2, 3, 4, 4))
np.testing.assert_allclose(result[0], np.stack([test_data1, test_data2]))

def test_npz3(self):
test_data1 = np.random.randint(0, 256, size=[3, 4, 4])
test_data2 = np.random.randint(0, 256, size=[3, 4, 4])
with tempfile.TemporaryDirectory() as tempdir:
filepath = os.path.join(tempdir, "test_data.npz")
np.savez(filepath, test1=test_data1, test2=test_data2)

reader = NumpyReader(npz_keys=["test1", "test2"])
reader.read(filepath)
result = reader.get_data()
self.assertTupleEqual(result[1]["spatial_shape"], test_data1.shape)
self.assertTupleEqual(result[0].shape, (2, 3, 4, 4))
np.testing.assert_allclose(result[0], np.stack([test_data1, test_data2]))

def test_npy_pickle(self):
test_data = {"test": np.random.randint(0, 256, size=[3, 4, 4])}
with tempfile.TemporaryDirectory() as tempdir:
filepath = os.path.join(tempdir, "test_data.npy")
np.save(filepath, test_data, allow_pickle=True)

reader = NumpyReader()
reader.read(filepath)
result = reader.get_data()[0].item()
self.assertTupleEqual(result["test"].shape, test_data["test"].shape)
np.testing.assert_allclose(result["test"], test_data["test"])


if __name__ == "__main__":
unittest.main()