Skip to content

Commit

Permalink
Add common usage explanations and code examples to qiskit.visualizati…
Browse files Browse the repository at this point in the history
…on module API page (#8569)

* add draft

* revert unintended changes

* revert unintended changes

* add example usage

* add common keyword arguments section

* add sections to apis

* fix internal links

* remove generated hist figure

* lint

* use matplotlib instead of Matplotlib in class reference

* change to a valid denisty matrix in examples

* import from qiskit.visualization instead of qiskit.tools.visualization

* remove unintended changes

* split counts and state visualizations

* remove overview and prerequisite headings

* move common kwargs sections to the top level

* remove link to api table

* remove apis headings

* remove extra blank lines

* remove extra blank lines

* minor twig on the counts to make them 1000 shots in total

* add an intro sentence before the example for common kwargs

Co-authored-by: Luciano Bello <bel@zurich.ibm.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Sep 8, 2022
1 parent 18b38a9 commit e9913e8
Showing 1 changed file with 127 additions and 3 deletions.
130 changes: 127 additions & 3 deletions qiskit/visualization/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
# (C) Copyright IBM 2017, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
Expand All @@ -17,20 +17,144 @@
.. currentmodule:: qiskit.visualization
Counts and State Visualizations
===============================
The visualization module contain functions that visualizes measurement outcome counts, quantum
states, circuits, pulses, devices and more.
To use visualization functions, you are required to install visualization optionals to your
development environment:
.. code-block:: bash
pip install 'qiskit[visualization]'
Common Keyword Arguments
========================
Many of the figures created by visualization functions in this module are created by `Matplotlib
<https://matplotlib.org/>`_ and accept a subset of the following common arguments. Consult the
individual documentation for exact details.
* ``title`` (``str``): a text string to use for the plot title.
* ``legend`` (``list``): a list of strings to use for labels of the data.
* ``figsize`` (``tuple``): figure size in inches .
* ``color`` (``list``): a list of strings for plotting.
* ``ax`` (`matplotlib.axes.Axes <https://matplotlib.org/stable/api/axes_api.html>`_): An optional
``Axes`` object to be used for the visualization output. If none is specified a new
`matplotlib.figure.Figure <https://matplotlib.org/stable/api/figure_api.html>`_ will be created
and used. Additionally, if specified there will be no returned ``Figure`` since it is redundant.
* ``filename`` (``str``): file path to save image to.
The following example demonstrates the common usage of these arguments:
.. jupyter-execute::
from qiskit.visualization import plot_histogram
counts1 = {'00': 499, '11': 501}
counts2 = {'00': 511, '11': 489}
data = [counts1, counts2]
plot_histogram(data)
You can specify ``legend``, ``title``, ``figsize`` and ``color`` by passing to the kwargs.
.. jupyter-execute::
legend = ['First execution', 'Second execution']
title = 'New histogram'
figsize = (10,10)
color=['crimson','midnightblue']
plot_histogram(data, legend=legend, title=title, figsize=figsize, color=color)
You can save the figure to file either by passing the file name to ``filename`` kwarg or use
`matplotlib.figure.Figure.savefig
<https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig>`_ method.
.. jupyter-execute::
plot_histogram(data, filename='new_hist.png')
hist = plot_histogram(data)
hist.savefig('new_hist.png')
Counts Visualizations
=====================
This section contains functions that visualize measurement outcome counts.
.. autosummary::
:toctree: ../stubs/
plot_histogram
Example Usage
-------------
Here is an example of using :func:`plot_histogram` to visualize measurement outcome counts:
.. jupyter-execute::
from qiskit.visualization import plot_histogram
counts = {"00": 501, "11": 499}
plot_histogram(counts)
The data can be a dictionary with bit string as key and counts as value, or more commonly a
:class:`~qiskit.result.Counts` object obtained from :meth:`~qiskit.result.Result.get_counts`.
State Visualizations
====================
This section contains functions that visualize quantum states.
.. autosummary::
:toctree: ../stubs/
plot_bloch_vector
plot_bloch_multivector
plot_state_city
plot_state_hinton
plot_state_paulivec
plot_state_qsphere
Example Usage
-------------
Here is an example of using :func:`plot_state_city` to visualize a quantum state:
.. jupyter-execute::
from qiskit.visualization import plot_state_city
state = [[ 0.75 , 0.433j],
[-0.433j, 0.25 ]]
plot_state_city(state)
The state can be array-like list of lists, ``numpy.array``, or more commonly
:class:`~qiskit.quantum_info.Statevector` or :class:`~qiskit.quantum_info.DensityMatrix` objects
obtained from a :class:`~qiskit.circuit.QuantumCircuit`:
.. jupyter-execute::
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector, DensityMatrix
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a Statevector
state = Statevector(qc)
plot_state_city(state)
.. jupyter-execute::
# plot using a DensityMatrix
state = DensityMatrix(qc)
plot_state_city(state)
You can find code examples for each visualization functions on the individual function API page.
Device Visualizations
=====================
Expand Down

0 comments on commit e9913e8

Please sign in to comment.