Skip to content

STY: made all .py files pep8 compliant #110

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 26, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions examples/3dplot.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,15 @@
import numpy as np
from matplotlib import cm


def f(x, y):
return np.cos(x**2 + y**2) / (1 + x**2 + y**2)

xgrid = np.linspace(-3, 3, 50)
ygrid = xgrid
x, y = np.meshgrid(xgrid, ygrid)
x, y = np.meshgrid(xgrid, ygrid)

fig = plt.figure(figsize=(8,6))
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x,
y,
Expand Down
4 changes: 1 addition & 3 deletions examples/3dvec.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,5 @@ def f(x, y):
x2, y2 = np.meshgrid(xr2, yr2)
z2 = f(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.jet,
linewidth=0, antialiased=True, alpha=0.2)
linewidth=0, antialiased=True, alpha=0.2)
plt.show()


1 change: 1 addition & 0 deletions examples/ar1_sd.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import numpy as np
import matplotlib.pyplot as plt


def ar1_sd(phi, omega):
return 1 / (1 - 2 * phi * np.cos(omega) + phi**2)

Expand Down
2 changes: 1 addition & 1 deletion examples/beta-binomial.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import matplotlib.pyplot as plt
import numpy as np


def gen_probs(n, a, b):
probs = np.zeros(n+1)
for k in range(n+1):
Expand All @@ -22,4 +23,3 @@ def gen_probs(n, a, b):
ax.plot(list(range(0, n+1)), gen_probs(n, a, b), '-o', label=ab_label)
ax.legend()
plt.show()

4 changes: 1 addition & 3 deletions examples/binom_df.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,11 @@
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import binom

fig, axes = plt.subplots(2, 2)
plt.subplots_adjust(hspace=0.4)
axes = axes.flatten()
ns = [1, 2, 4, 8]
dom = list(range(9))
dom = list(range(9))

for ax, n in zip(axes, ns):
b = binom(n, 0.5)
Expand All @@ -18,4 +17,3 @@
ax.set_title(r'$n = {}$'.format(n))

fig.show()

4 changes: 1 addition & 3 deletions examples/boxplot_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,5 @@
ax.boxplot([x, y, z])
ax.set_xticks((1, 2, 3))
ax.set_ylim(-2, 14)
ax.set_xticklabels((r'$X$', r'$Y$', r'$Z$'), fontsize=16)
ax.set_xticklabels((r'$X$', r'$Y$', r'$Z$'), fontsize=16)
plt.show()


2 changes: 1 addition & 1 deletion examples/career_vf_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
v = qe.compute_fixed_point(wp.bellman_operator, v_init)

# === plot value function === #
fig = plt.figure(figsize=(8,6))
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
tg, eg = np.meshgrid(wp.theta, wp.epsilon)
ax.plot_surface(tg,
Expand Down
6 changes: 2 additions & 4 deletions examples/cauchy_samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,9 @@
sample_mean[i] = np.mean(data[:i])

# == Plot == #
ax.plot(list(range(n)), sample_mean, 'r-', lw=3, alpha=0.6, label=r'$\bar X_n$')
ax.plot(list(range(n)), sample_mean, 'r-', lw=3, alpha=0.6,
label=r'$\bar X_n$')
ax.plot(list(range(n)), [0] * n, 'k--', lw=0.5)
ax.legend()

fig.show()



27 changes: 13 additions & 14 deletions examples/clt3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,24 +8,25 @@
"""

import numpy as np
from scipy.stats import beta, bernoulli, gaussian_kde
from scipy.stats import beta, gaussian_kde
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt

beta_dist = beta(2, 2)
beta_dist = beta(2, 2)


def gen_x_draws(k):
"""
Returns a flat array containing k independent draws from the
Returns a flat array containing k independent draws from the
distribution of X, the underlying random variable. This distribution is
itself a convex combination of three beta distributions.
"""
bdraws = beta_dist.rvs((3, k))
# == Transform rows, so each represents a different distribution == #
bdraws[0,:] -= 0.5
bdraws[1,:] += 0.6
bdraws[2,:] -= 1.1
bdraws[0, :] -= 0.5
bdraws[1, :] += 0.6
bdraws[2, :] -= 1.1
# == Set X[i] = bdraws[j, i], where j is a random draw from {0, 1, 2} == #
js = np.random.random_integers(0, 2, size=k)
X = bdraws[js, np.arange(k)]
Expand All @@ -40,7 +41,7 @@ def gen_x_draws(k):
# == Form a matrix Z such that each column is reps independent draws of X == #
Z = np.empty((reps, nmax))
for i in range(nmax):
Z[:,i] = gen_x_draws(reps)
Z[:, i] = gen_x_draws(reps)
# == Take cumulative sum across columns
S = Z.cumsum(axis=1)
# == Multiply j-th column by sqrt j == #
Expand All @@ -52,23 +53,23 @@ def gen_x_draws(k):
ax = fig.gca(projection='3d')

a, b = -3, 3
gs = 100
gs = 100
xs = np.linspace(a, b, gs)

# == Build verts == #
greys = np.linspace(0.3, 0.7, nmax)
verts = []
for n in ns:
density = gaussian_kde(Y[:,n-1])
density = gaussian_kde(Y[:, n-1])
ys = density(xs)
verts.append(list(zip(xs, ys)))

poly = PolyCollection(verts, facecolors = [str(g) for g in greys])
poly = PolyCollection(verts, facecolors=[str(g) for g in greys])
poly.set_alpha(0.85)
ax.add_collection3d(poly, zs=ns, zdir='x')

#ax.text(np.mean(rhos), a-1.4, -0.02, r'$\beta$', fontsize=16)
#ax.text(np.max(rhos)+0.016, (a+b)/2, -0.02, r'$\log(y)$', fontsize=16)
# ax.text(np.mean(rhos), a-1.4, -0.02, r'$\beta$', fontsize=16)
# ax.text(np.max(rhos)+0.016, (a+b)/2, -0.02, r'$\log(y)$', fontsize=16)
ax.set_xlim3d(1, nmax)
ax.set_xticks(ns)
ax.set_xlabel("n")
Expand All @@ -77,5 +78,3 @@ def gen_x_draws(k):
ax.set_zlim3d(0, 0.4)
ax.set_zticks((0.2, 0.4))
plt.show()


4 changes: 2 additions & 2 deletions examples/dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,13 @@

import random


class Dice:

faces = (1, 2, 3, 4, 5, 6)

def __init__(self):
self.current_face = 1
self.current_face = 1

def roll(self):
self.current_face = random.choice(Dice.faces)

15 changes: 5 additions & 10 deletions examples/duopoly_lqnash.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,20 +10,15 @@

"""
from __future__ import division
import sys
import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt
from numpy import sqrt, max, eye, dot, zeros, cumsum, array
from numpy.random import randn
from numpy import array, eye
from quantecon.lqnash import nnash


#---------------------------------------------------------------------#
# ---------------------------------------------------------------------#
# Set up parameter values and LQ matrices
# Remember state is x_t = [1, y_{1, t}, y_{2, t}] and
# control is u_{i, t} = [y_{i, t+1} - y_{i, t}]
#---------------------------------------------------------------------#
# ---------------------------------------------------------------------#
a0 = 10.
a1 = 1.
beta = 1.
Expand All @@ -45,9 +40,9 @@
q2 = array([[-.5*d]])


#---------------------------------------------------------------------#
# ---------------------------------------------------------------------#
# Solve using QE's nnash function
#---------------------------------------------------------------------#
# ---------------------------------------------------------------------#

f1, f2, p1, p2 = nnash(a, b1, b2, r1, r2, q1, q2, 0., 0., 0., 0., 0., 0.,
tol=1e-8, max_iter=1000)
3 changes: 1 addition & 2 deletions examples/duopoly_mpe.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,10 @@

# == Solve using QE's nnash function == #
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2,
beta=beta)
beta=beta)

# == Display policies == #
print("Computed policies for firm 1 and firm 2:\n")
print("F1 = {}".format(F1))
print("F2 = {}".format(F2))
print("\n")

29 changes: 14 additions & 15 deletions examples/eigenvec.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
(2, 1))
A = np.array(A)
evals, evecs = eig(A)
evecs = evecs[:,0], evecs[:,1]
evecs = evecs[:, 0], evecs[:, 1]

fig, ax = plt.subplots()
# Set the axes through the origin
Expand All @@ -22,30 +22,30 @@
for spine in ['right', 'top']:
ax.spines[spine].set_color('none')
ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
#ax.set_xticks(())
#ax.set_yticks(())
# ax.set_xticks(())
# ax.set_yticks(())

# Plot each eigenvector
for v in evecs:
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='blue',
shrink=0,
alpha=0.6,
width=0.5))
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='blue',
shrink=0,
alpha=0.6,
width=0.5))

# Plot the image of each eigenvector
for v in evecs:
v = np.dot(A, v)
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='red',
shrink=0,
alpha=0.6,
width=0.5))
ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='red',
shrink=0,
alpha=0.6,
width=0.5))

# Plot the lines they run through
x = np.linspace(xmin, xmax, 3)
Expand All @@ -55,4 +55,3 @@


plt.show()

3 changes: 2 additions & 1 deletion examples/evans_sargent.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from quantecon.matrix_eqn import solve_discrete_lyapunov
from scipy.optimize import root


def computeG(A0, A1, d, Q0, tau0, beta, mu):
"""
Compute government income given mu and return tax revenues and
Expand Down Expand Up @@ -107,6 +108,7 @@ def computeG(A0, A1, d, Q0, tau0, beta, mu):
Q0 = 1000.0
tau0 = 0.0


def gg(mu):
"""
Computes the tax revenues for the government given Lagrangian
Expand Down Expand Up @@ -175,4 +177,3 @@ def gg(mu):
print(y)
print("-F")
print(-F)

7 changes: 3 additions & 4 deletions examples/evans_sargent_plot1.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"""
import numpy as np
import matplotlib.pyplot as plt
from evans_sargent import T, y
from evans_sargent import T, y

tt = np.arange(T) # tt is used to make the plot time index correct.

Expand All @@ -20,8 +20,8 @@
ax.set_xlim(0, 15)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor' : bbox, 'loc' : 3, 'mode' : 'expand'}
p_args = {'lw' : 2, 'alpha' : 0.7}
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

ax = axes[0]
ax.plot(tt, y[1, :], 'b-', label="output", **p_args)
Expand All @@ -42,4 +42,3 @@
ax.set_xlabel(r'time', fontsize=16)

plt.show()

14 changes: 8 additions & 6 deletions examples/evans_sargent_plot2.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"""
import numpy as np
import matplotlib.pyplot as plt
from evans_sargent import T, y, uhatdif, tauhatdif, mu, G, GPay
from evans_sargent import T, uhatdif, tauhatdif, mu, G

tt = np.arange(T) # tt is used to make the plot time index correct.
tt2 = np.arange(T-1)
Expand All @@ -21,18 +21,20 @@
ax.set_xlim(-0.5, 15)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor' : bbox, 'loc' : 3, 'mode' : 'expand'}
p_args = {'lw' : 2, 'alpha' : 0.7}
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

ax = axes[0]
ax.plot(tt2, tauhatdif, label=r'time inconsistency differential for tax rate', **p_args)
ax.plot(tt2, tauhatdif, label=r'time inconsistency differential for tax rate',
**p_args)
ax.set_ylabel(r"$\Delta\tau$", fontsize=16)
ax.set_ylim(-0.1, 1.4)
ax.set_yticks((0.0, 0.4, 0.8, 1.2))
ax.legend(ncol=1, **legend_args)

ax = axes[1]
ax.plot(tt, uhatdif, label=r'time inconsistency differential for $u$', **p_args)
ax.plot(tt, uhatdif, label=r'time inconsistency differential for $u$',
**p_args)
ax.set_ylabel(r"$\Delta u$", fontsize=16)
ax.set_ylim(-3, .1)
ax.set_yticks((-3.0, -2.0, -1.0, 0.0))
Expand All @@ -55,4 +57,4 @@
ax.set_xlabel(r'time', fontsize=16)

plt.show()
#lines = plt.plot(tt, GPay, "o")
# lines = plt.plot(tt, GPay, "o")
Loading