Skip to content

SUES-200: A Multi-height Multi-scene Cross-view Image Benchmark Across Drone and Satellite

License

Notifications You must be signed in to change notification settings

Reza-Zhu/SUES-200-Benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SUES-200: A Multi-height Multi-scene Cross-view Image Matching Benchmark Across UAV and Satellite

This paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology.

arXiv Link: https://arxiv.org/abs/2204.10704

Datasets

Download SUES-200 dataset. Notices: SUES-200 is ONLY available to academic research.

Google Drive Link: https://drive.google.com/file/d/1UyVyFJ_pRaJHIr_eBY2HL7gkS5y9UxqI/view?usp=share_link

百度网盘: https://pan.baidu.com/s/1mrd-7ADm57_OchAvO1XmNw 提取码:p836

天翼网盘(不限速): https://cloud.189.cn/t/yMnaEnR322Yj 提取码:veh7

My email : rzzhu24@m.fudan.edu.cn

Pre-trained Weight

链接: https://pan.baidu.com/s/1aq51FLfg3bPG4xoNW1Usxw?pwd=rbnu 提取码: rbnu

Quickly Start

Installation

pip install timm pyyaml pytorch-metric-learning scipy pandas opencv-python grad-cam einops imgaug

Config File

default: settings.yaml

# dateset path
dataset_path: /media/data1/Datasets
weight_save_path: /media/data1/save_model_weight

# intial parameters
fp16 : 0  # apex
classes : 120 # 200*0.6=120
image_size: 384

# choose model
model : resnet

# super parameters
batch_size : 32
num_epochs : 80
drop_rate : 0.2
weight_decay : 0.0005
lr : 0.005

# test and evaluate


# if LPN
block : 4

# if SUES-200
height : 150

Split Dataset

python script/split_dataset.py --path your_path 
mkdir your_path/Dataset
mv your_path/Training your_path/Dataset
mv your_path/Testing your_path/Dataset

Train

python train.py --cfg settings.yaml

Test & Evaluate

Test basic model

python test_and_evaluate.py --cfg settings.yaml --name resnet_150_2022-04-25-10:26:34 --seq 3

Test Robustness to uncertainties

python test_and_evaluate_uncertainties.py --cfg settings.yaml --types ["snow", "fog"] --heights [150, 200]

Ablation Experiments

Test Distance Measurement Algorithm

python test_and_evaluate.py --dist Eu

Test Ensemble Strategies in Multiply Queries

# Max Pooling
python multi_test_and_evaluate_pooling.py --type max
# Voting
python multi_test_and_evaluate_voting.py

Citation

@ARTICLE{zhu2023sues,
  author={Zhu, Runzhe and Yin, Ling and Yang, Mingze and Wu, Fei and Yang, Yuncheng and Hu, Wenbo},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={SUES-200: A Multi-height Multi-scene Cross-view Image Benchmark Across Drone and Satellite}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TCSVT.2023.3249204}}

TO-DO List

  • Improve README.md (ing...)

    • Evaluation methods
    • Visualization
    • Multiqueries
    • Draw heat map
    • ...
  • Support University-1652 (ing....)

  • ...

Chinese Version

双分支卷积网络训练和测试:

  1. 配置文件:settings.yaml

    该配置文件配置了

    • 数据集地址 dataset_path
    • 权重文件保存地址 weight_save_path
    • 选取不同高度的数据 height
    • 训练时选用的特征提取模型 model
    • 训练时的学习率 lr
    • 训练轮数 num_epoch
    • 模型中的drop out drop_rate
    • 训练时的批次大小 batch_size
  2. 开始训练:执行 train.py 会根据上面配置好的参数进行训练,比较好的模型权重会保存在权重文件保存地址下的save_model_weight文件夹中(训练时会自动创建该文件夹)

  3. 开始测试:执行 test_and_evaluate.py 会开始测试并输出测试结果,最后的结果会保存在save_model_weight中

基于网格搜素的自动调参数文件:AutoTuning.py

定义特征提取算法的文件:model_.py

CBAM_ResNet 算法模型定义:senet/cbam_resnet.py

数据集预处理,和其它一些算法在本数据集上的复现

数据集预处理文件夹:script

VLAD 复现代码:VLAD文件夹

NetVLAD 复现代码:NetVLAD文件夹,train_NetVLAD.py test_NetVlAD.py

About

SUES-200: A Multi-height Multi-scene Cross-view Image Benchmark Across Drone and Satellite

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages