Skip to content

Commit

Permalink
Merge pull request #1572 from axsaucedo/1413_knative_eventing
Browse files Browse the repository at this point in the history
Basic support for Cloudevents with KNative Eventing Example
  • Loading branch information
ukclivecox authored Mar 30, 2020
2 parents 6fb6433 + bcbbc3f commit df3a57d
Show file tree
Hide file tree
Showing 12 changed files with 1,337 additions and 4 deletions.
719 changes: 719 additions & 0 deletions examples/streaming/knative-eventing/README.ipynb

Large diffs are not rendered by default.

384 changes: 384 additions & 0 deletions examples/streaming/knative-eventing/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,384 @@
# Seldon Core Real Time Stream Processing with KNative Eventing

In this example we will show how you can enable real time stream processing in Seldon Core by leveraging the KNative Eventing integration.

In this example we will deploy a simple model containerised with Seldon Core and we will leverage the basic Seldon Core integration with KNative Eventing which will allow us to connect it so it can receive cloud events as requests and return a cloudevent-enabled response which can be collected by other components.

## Pre-requisites

You will require the following in order to go ahead:
* Istio 1.42+ Installed ([Documentation Instructions](https://istio.io/docs/setup/install/helm/))
* KNative Eventing 0.13 installed ([Documentation Instructions](https://knative.dev/docs/install/any-kubernetes-cluster/))
* Seldon Core v1.1+ installed with Istio Ingress Enabled ([Documentation Instructions](https://docs.seldon.io/projects/seldon-core/en/latest/workflow/install.html#ingress-support))

## Deploy your Seldon Model

We will first deploy our model using Seldon Core. In this case we'll use one of the [pre-packaged model servers](https://docs.seldon.io/projects/seldon-core/en/latest/servers/overview.html).

We first createa configuration file:


```python
%%writefile ./assets/simple-iris-deployment.yaml

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
name: iris-deployment
spec:
predictors:
- graph:
implementation: SKLEARN_SERVER
modelUri: gs://seldon-models/sklearn/iris
name: simple-iris-model
children: []
name: default
replicas: 1

```

Overwriting ./assets/simple-iris-deployment.yaml


### Run the model in our cluster

Now we run the Seldon Deployment configuration file we just created.


```python
!kubectl apply -f assets/simple-iris-deployment.yaml
```

seldondeployment.machinelearning.seldon.io/iris-deployment created


### Check that the model has been deployed




```python
!kubectl get pods | grep iris
```

iris-deployment-default-0-simple-iris-model-65697469fb-b4dhs 2/2 Running 0 25s


## Create a Trigger to reach our model

We want to create a trigger that is able to reach directly to the service.

We will be using the following seldon deployment:


```python
!kubectl get sdep | grep iris
```

iris-deployment 21s


### Create trigger configuration


```python
%%writefile ./assets/seldon-knative-trigger.yaml

apiVersion: eventing.knative.dev/v1beta1
kind: Trigger
metadata:
name: seldon-eventing-sklearn-trigger
spec:
broker: default
filter:
attributes:
type: seldon.iris-deployment.default.request
subscriber:
ref:
apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
name: iris-deployment

```

Overwriting ./assets/seldon-knative-trigger.yaml


Create this trigger file which will send all cloudevents of type `"seldon.<deploymentName>.request"`.


```python
!kubectl apply -f assets/seldon-knative-trigger.yaml
```

trigger.eventing.knative.dev/seldon-eventing-sklearn-trigger created


CHeck that the trigger is working correctly (you should see "Ready: True"), together with the URL that will be reached.


```python
!kubectl get trigger
```

NAME READY REASON BROKER SUBSCRIBER_URI AGE
event-display True default http://event-display.default.svc.cluster.local/ 9d
seldon-eventing-sklearn-trigger True default http://iris-deployment-default.default.svc.cluster.local:8000/api/v1.0/predictions 18m


### Send a request to the KNative Eventing default broker

To send requests we can do so by sending a curl command from a pod inside of the cluster.


```python
!kubectl run --quiet=true -it --rm curl --image=radial/busyboxplus:curl --restart=Never -- \
curl -v "default-broker.default.svc.cluster.local" \
-H "Ce-Id: 536808d3-88be-4077-9d7a-a3f162705f79" \
-H "Ce-specversion: 0.3" \
-H "Ce-Type: seldon.iris-deployment.default.request" \
-H "Ce-Source: seldon.examples.streaming.curl" \
-H "Content-Type: application/json" \
-d '{"data": { "ndarray": [[1,2,3,4]]}}'
```


















### Check our model has received it

We can do this by checking the logs (we can query the logs through the service name) and see that the request has been processed


```python
!kubectl logs svc/iris-deployment-default simple-iris-model | tail -6
```

WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: off
2020-03-27 17:16:36,681 - werkzeug:_log:122 - INFO: * Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)
2020-03-27 17:17:14,228 - SKLearnServer:predict:37 - INFO: Calling predict_proba
2020-03-27 17:17:14,231 - werkzeug:_log:122 - INFO: 127.0.0.1 - - [27/Mar/2020 17:17:14] "POST /predict HTTP/1.1" 200 -


## Connect a source to listen to the results of the seldon model

Our Seldon Model is producing results which are sent back to KNative.

This means that we can connect other subsequent services through a trigger that filters for those response cloudevents.

### First create the service that willl print the results

This is just a simple pod that prints all the request data into the console.


```python
%%writefile ./assets/event-display-deployment.yaml

# event-display app deploment
apiVersion: apps/v1
kind: Deployment
metadata:
name: event-display
spec:
replicas: 1
selector:
matchLabels: &labels
app: event-display
template:
metadata:
labels: *labels
spec:
containers:
- name: helloworld-python
image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/event_display
---
# Service that exposes event-display app.
# This will be the subscriber for the Trigger
kind: Service
apiVersion: v1
metadata:
name: event-display
spec:
selector:
app: event-display
ports:
- protocol: TCP
port: 80
targetPort: 8080

```

Overwriting ./assets/event-display-deployment.yaml


### Now run the event display resources


```python
!kubectl apply -f assets/event-display-deployment.yaml
```

deployment.apps/event-display unchanged
service/event-display unchanged


### Check that the event display has been deployed


```python
!kubectl get pods | grep event
```

event-display-7c69959598-txxdg 1/1 Running 0 6d14h


### Create trigger for event display

We now can create a trigger that sends all the requests of the type and source created by the seldon deployment to our event display pod


```python
%%writefile ./assets/event-display-trigger.yaml

# Trigger to send events to service above
apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
name: event-display
spec:
broker: default
filter:
attributes:
type: seldon.iris-deployment.default.response
source: seldon.iris-deployment
subscriber:
ref:
apiVersion: v1
kind: Service
name: event-display

```

Overwriting ./assets/event-display-trigger.yaml


### Apply that trigger


```python
!kubectl apply -f assets/event-display-trigger.yaml
```

trigger.eventing.knative.dev/event-display configured


### Check our triggers are correctly set up

We now should see the event trigger available.


```python
!kubectl get trigger
```

NAME READY REASON BROKER SUBSCRIBER_URI AGE
event-display True default http://event-display.default.svc.cluster.local/ 9d
seldon-eventing-sklearn-trigger True default http://iris-deployment-default.default.svc.cluster.local:8000/api/v1.0/predictions 18m


## Send a couple of requests more

We can use the same process we outlined above to send a couple more events.



```python
!kubectl run --quiet=true -it --rm curl --image=radial/busyboxplus:curl --restart=Never -- \
curl -v "default-broker.default.svc.cluster.local" \
-H "Ce-Id: 536808d3-88be-4077-9d7a-a3f162705f79" \
-H "Ce-Specversion: 0.3" \
-H "Ce-Type: seldon.iris-deployment.default.request" \
-H "Ce-Source: dev.knative.samples/helloworldsource" \
-H "Content-Type: application/json" \
-d '{"data": { "ndarray": [[1,2,3,4]]}}'
```


















### Visualise the requests that come from the service


```python
!kubectl logs svc/event-display | tail -40
```

☁️ cloudevents.Event
Validation: valid
Context Attributes,
specversion: 0.3
type: seldon.iris-deployment.default.response
source: seldon.iris-deployment
id: bee392e0-77cc-44fc-915b-5a08660a1071
time: 2020-03-27T17:20:42.040931317Z
datacontenttype: application/json
Extensions,
knativearrivaltime: 2020-03-27T17:20:42.045829175Z
knativehistory: default-kne-trigger-kn-channel.default.svc.cluster.local
path: /api/v1.0/predictions
traceparent: 00-e01a320040c3f368a14bd3b54c294107-6299f694fefb34b5-00
Data,
{
"data": {
"names": [
"t:0",
"t:1",
"t:2"
],
"ndarray": [
[
0.0006985194531162841,
0.003668039039435755,
0.9956334415074478
]
]
},
"meta": {}
}




```python

```
Loading

0 comments on commit df3a57d

Please sign in to comment.